Database Fundamentals

presented to NYPHP
May 22, 2007

by Kenneth Downs

Secure Data Software, Inc.
ken@secdat.com
www.secdat.com
www.andromeda-project.org

mailto:ken@secdat.com
http://www.secdat.com/

Pre-Relational

In the bad old days, every program had to “know” the physical structure
of every data file. No SQL! Every operation had to open files and scan
record by record, or write libraries to do so.

The Modern Approach Old-Fashioned PHP

<Tphp
OLDEN DAYS */

<Tphp
/% MODERM

SFILE=FOPEN{'customers.dat','r'D;
$record_length=122;

mers

omer=". (gp ' customer ')

while(true) {
$record=fread($FILE, $record_length);
$customer=substr{$record, 10, 15);

The Relational Revolution

The “Relational Revolution” was based on using a mathematical model
to design a system that would have predictable behavior.

Edsger Dykstra had a lot to say on “formal verification”

One starts with a mathematical specification of what a program

is supposed to do and applies mathematical transformations to

the specification until it is turned into a program that can be executed.
The resulting program is then known to be correct by construction.

Wikipedia Page: http://en.wikipedia.org/wiki/Edsger_Dijkstra

EF Codd (1 of 3) Logical Propositions

EF Codd is the father of the relational model. He was looking for a way
to organize and store logical propositions:

Propositions:
e My car 1s blue
e Your caris red

A “Relation”

Owner Color

EF Codd (2 of 3) Relational Math

Using either Relational Algebra or Relational Calculus, you can describe
all possible combinations of relations (or as we call them, tables).

A “projection” 1s only some columns, a “selection” 1s only some rows, and
several kinds of “joins” combine two or more relations into another relation.

Terms like “set division” and “theta-join” are all defined and expressible
in SQL or some other query language.

Wikipedia topics: Relational Algebra, Relational Calculus, Relational Model

EF Codd (3 of 3) The 12 Rules

Ultimately Codd defined 12 rules, and later on many more. Overall
they make the implementation of relational 1deas very powertul.

DDL and DML.: Catalog:
Create table example (SELECT
name char(20),address varchar(30) table name,column name
) , type id
,Character maximum length
INSERT INTO example (name,address) FROM
VALUES ('joe','123 main') information scheme.columns

Review: Model vs. File Format

The Relational Model can be called a model because it describes all
aspects of managing data.

A comparison would be XML, which is by comparison merely a
file format, albeit a well-supported one.

Review: Model vs. “Good Idea”

The operations in a relational data store are completely described by
a branch of mathematics, and so the behaviors are predictable.

Compare to object orientation, which is intuitively appealing, and

may even be a good 1dea, and may even be rigorously developed,

but which cannot be described by a formal mathematics. You can never
provide an a priori argument for one direction or another.

Tangent 1 of 2: Code Generation

Code generation 1s extremely easy for databases because the DDL, DML
and system catalogs always reduce down to lists of columns.

Put another way, every operation on a relational database can be reduced
itself to a collection of values in a database.

Tangent 2: People Like Tables

Ken's Law: “People work well with data organized into tables.”

Tables are sufficiently general, you don't need extra mechanisms to store
all of the customer's data.

Tables are not overly general, you do not need some other way to show
1t to mere mortals so that they will understand it.

Shocker: SQL is not Relational!

Big Difference 1s “bags” not sets. Bags allow duplicate values, nobody
has produced a truly relational system.

Will the world end? What about all that theory? Not all that bad...

A SET A BAG

First Name Last Name First Name Last Name
John Boone John Boone
Frank Chalmers Frank Chalmers

Jackie Boone John Boone

Later Concept: ACID Transaction

A transaction is one or more SQL statements which taken together have:

Atomicity: All or nothing.

Consistency: All rules must be followed at beginning and end.
Isolation: Nobody outside of transactions sees data in “half-way” state.
Durability: Once transaction 1s committed, no chance of loss.

The Primary Key

The primary key is one or more columns whose values must be
unique within a table. In a truly relational system there would be
no primary key, all rows would be unique across all columns.

In the beginning of table design, ask, “What am I keeping track of?”
Each thing you are keeping track of 1s a candidate to be a table, and
then “How 1is it identified?”” points towards the primary key.

Some have algorithms, like SSN, some are user-entered, like a
customer code of “JONES” and some are assigned solely to be
unique such as an Order Number.

The Foreign Key

A foreign key 1s a column or columns in a table whose values must
match the primary key of a “parent” table.

Customer Address Order Date Customer Total

ATREIDES 123 Mailn Street
CORRINO 456 2" Selusa

1 5/1/07 ATREIDES 50.00
7 5/2/07 ATREIDES 70.00
8 4/23/07 CORRINO 25.00
11 5/3/07 CORRINO 37.50

First Normal Form

No repeating groups. No lists, and no “item_1", “item_2".

Employee Day Sales Employee Day Sale
Sax 5/1/07 50,20,75 Sax 5/1/07 50
Sax 5/1/07 20
Sax 5/1/07 75
Ann 5/1/07 37,120 Ann 5/1/07 37

Ann 5/1/07 120

Second Normal Form

All non-key attributes depend upon the entire key, not just part.

Student Class Professor Student Class

Maya Aeroforming Nirgal Maya Aeroforming

Arkady Aeroforming Nirgal Arkady Aeroforming

Maya Regolithology Nadia Maya Regolithology

Arkady Regolithology Nadia Arkady Regolithology
Class Professor

Aeroforming Nirgal
Regolithology Nadia

Third Normal Form

No functional dependencies. No column may depend on a non-key value.

ORDER Item Price Qty
1 WINDMILL 30.00 3
1 COIL 15.00 2

1 MICROCOLEUS 115.00 10

Constraints

A constraint i1s some condition that must always apply. A primary key
and a foreign key are both specialized constraints. Generalized
constraints might be expressed with SQL:

CREATE TABLE CUSTOMERS (
COLUMN CUSTOMER CHAR(20)
, COLUMN DISCOUNT PCT NUMERIC (3,2)
CONSTRAINT PCT CHECK (

DISCOUNT PCT > 0 and DISCOUNT PCT <= 1
)

Security

Security 1s defined entirely in terms of tables, and who can:
e INSERT

« UPDATE

« DELETE

« SELECT

A system that uses real database accounts and real security 1s immune
to SQL injection.

Triggers

A trigger 1s code that executes when something occurs to a table.
A trigger can modify incoming data, read from other tables and
execute further commands on other tables.

e Before / After INSERT For Row or Statement

e Before / After UPDATE For Row or Statement

o Before / After DELETE For Row or Statement

Simplest possible encapsulation.

Triggers are the basis of all automation.

Not Appearing in this Presentation

e Stored Procedures

e Indexes

e Higher forms of normalization. Try “Domain-Key Normalization™.
e Schemas

e Database Abstraction Layers, a different word for everything
e Why do DB Purists say bad things about mySQL?

Flamewar: The E-A-V Approach

Programmer thinks: “Hey, I've got a great Entity Att Value
idea, I'll save myself the trouble of those ======== ========== ========
pesky table structure updates, it will Customer First Name Arkady

be easier....” Customer Last Name Bogdonov

Customer Nationality Russian
But you throw away SQL, back to slide #1.

Ken's encounters in 1998 and 2003.

Object Relational Mapping

We should see by now that databases and programs have two very
distinct natures. The fundamental goal of ORM is to resolve them
to a similar nature, which cannot be done.

Start Here The ORM Mistake A DB Application

I'm a :I
handles tables!

systems!

ORM: Look! No
. more divergent

Where to Put Biz Rules?

A review of the schools of thought, all of which are completely
and utterly correct and true and all of which contradict each other.

1. DB Purist: Data must be fully normalized, database contains only
constraints, and never contains derived data or calculations.

2. Programmer Purist: All logic belongs in my code, the database takes
what I give it, normalized or not. No constraints or code in database
because they don't “belong” there.

3. Maverick Positions: Databases can contain all logic, making them
completely self-contained. “Lowest energy state encapsulation.”

THE END

