
!"#$%&#'()*#+(,-.$/#+*0#,-$1#-2

!""

Writing a social
application in PHP/

MySQL
and what happens when a
million people show up on

opening day

Duleepa “Dups” Wijayawardhana
MySQL Community Team

Who the hell am I?

Who the hell am I?
• PHP/MySQL Developer since 1999/2000

Who the hell am I?
• PHP/MySQL Developer since 1999/2000

• MySQL Community Relations Manager in
North America since... oh... last week :)

Who the hell am I?
• PHP/MySQL Developer since 1999/2000

• MySQL Community Relations Manager in
North America since... oh... last week :)

• Web Developer for MySQL

Who the hell am I?
• PHP/MySQL Developer since 1999/2000

• MySQL Community Relations Manager in
North America since... oh... last week :)

• Web Developer for MySQL

• Various positions at BioWare Corp.
2001-2007

Who the hell am I?
• PHP/MySQL Developer since 1999/2000

• MySQL Community Relations Manager in
North America since... oh... last week :)

• Web Developer for MySQL

• Various positions at BioWare Corp.
2001-2007

• Also run the Annual St. Patricks Day Drunk
Dial (http://www.stpatsdrunkdial.com)

http://www.stpatsdrunkdial.com
http://www.stpatsdrunkdial.com

What makes me qualified?

• Spent a lot of time screaming at Murphy.

What makes me qualified?

• Spent a lot of time screaming at Murphy.

• Hired by BioWare to help create the
BioWare Community Site for Neverwinter
Nights (launched June 2002)

What makes me qualified?

• Spent a lot of time screaming at Murphy.

• Hired by BioWare to help create the
BioWare Community Site for Neverwinter
Nights (launched June 2002)

• Had no clue what to expect, but the rest as
they say now is history.

What makes me qualified?

• Spent a lot of time screaming at Murphy.

• Hired by BioWare to help create the
BioWare Community Site for Neverwinter
Nights (launched June 2002)

• Had no clue what to expect, but the rest as
they say now is history.

• Learned lots. Still learning...

What makes me qualified?

• Spent a lot of time screaming at Murphy.

• Hired by BioWare to help create the
BioWare Community Site for Neverwinter
Nights (launched June 2002)

• Had no clue what to expect, but the rest as
they say now is history.

• Learned lots. Still learning...

• Insanity...

What makes me qualified?

What are we going to cover?

What are we going to cover?

• A History of Disaster

What are we going to cover?

• A History of Disaster

• Launching the BioWare
Community

What are we going to cover?

• A History of Disaster

• Launching the BioWare
Community

• Pain Points of an Application

A History of Disaster

A History of Disaster

• What skill must you have to be a web
developer/sysadmin in charge of a major
web application?

A History of Disaster

• What skill must you have to be a web
developer/sysadmin in charge of a major
web application?

• The answer: “You must be slightly
insane!”

A History of Disaster

• What skill must you have to be a web
developer/sysadmin in charge of a major
web application?

• The answer: “You must be slightly
insane!”

• ... and perhaps slightly masochistic :)

A History of Disaster

A History of Disaster

• Web Server Crashes (typical)

A History of Disaster

• Web Server Crashes (typical)

• Load Balancer Crashes

A History of Disaster

• Web Server Crashes (typical)

• Load Balancer Crashes

• Major Mail System crashes

A History of Disaster

• Web Server Crashes (typical)

• Load Balancer Crashes

• Major Mail System crashes

• File System Crashes (or how I came to
hate NFS)

A History of Disaster

• Web Server Crashes (typical)

• Load Balancer Crashes

• Major Mail System crashes

• File System Crashes (or how I came to
hate NFS)

• Database Crashes (sigh)

A History of Disaster

• Web Server Crashes (typical)

• Load Balancer Crashes

• Major Mail System crashes

• File System Crashes (or how I came to
hate NFS)

• Database Crashes (sigh)

• Power outage in the building

A History of Disaster

A History of Disaster
• Sweden has an incredibly hot summer.

Who knew.

A History of Disaster
• Sweden has an incredibly hot summer.

Who knew.

• Building nearby burns down and takes
down the city grid, we sit on the
balcony and watch the fire...

A History of Disaster
• Sweden has an incredibly hot summer.

Who knew.

• Building nearby burns down and takes
down the city grid, we sit on the
balcony and watch the fire...

• The toilet explodes and floods.

A History of Disaster
• Sweden has an incredibly hot summer.

Who knew.

• Building nearby burns down and takes
down the city grid, we sit on the
balcony and watch the fire...

• The toilet explodes and floods.

• Someone connects the storm drain to
the kitchen sink. Oops.

A History of Disaster

A History of Disaster
• Someone pours water on the electric

mainboard and explodes your main
electrical supply the day before a release. Big
Oops.

A History of Disaster

A History of Disaster
• Imagine running through

one amazingly crazy
blizzard, drunk as you
watch transformers
explode and the sweeping
cone of darkness spread
across the city.... You have
the presence of mind to do
a sequenced shut down but
you can’t see straight to
bring anything back up so
you sleep on the server
room floor to sober up.

What is a Social Application?

What is a Social Application?

• A site which primarily focuses on interactions
between users.

What is a Social Application?

• A site which primarily focuses on interactions
between users.

• MySQL.com is not a social application,

What is a Social Application?

• A site which primarily focuses on interactions
between users.

• MySQL.com is not a social application,

• “Web 2.0” applications: Facebook, LinkedIn,
MySpace, most community sites.

What is a Social Application?

• A site which primarily focuses on interactions
between users.

• MySQL.com is not a social application,

• “Web 2.0” applications: Facebook, LinkedIn,
MySpace, most community sites.

• Developing and Launching a social application
has special “challenges”

Neverwinter Nights Community...

A primer for launching a social
application...

A primer for launching a social
application...

1. Plan to have about 10 times the number of
users that you conservatively expect.

A primer for launching a social
application...

1. Plan to have about 10 times the number of
users that you conservatively expect.

2. Be prepared for getting 100 times if your
marketing has been good.

A primer for launching a social
application...

1. Plan to have about 10 times the number of
users that you conservatively expect.

2. Be prepared for getting 100 times if your
marketing has been good.

3. Be prepared to scale *EVERY* aspect of
your application: Web, DB, Mail etc.

A primer for launching a social
application...

1. Plan to have about 10 times the number of
users that you conservatively expect.

2. Be prepared for getting 100 times if your
marketing has been good.

3. Be prepared to scale *EVERY* aspect of
your application: Web, DB, Mail etc.

4. Be smart, launch softly.

A primer for launching a social
application...

1. Plan to have about 10 times the number of
users that you conservatively expect.

2. Be prepared for getting 100 times if your
marketing has been good.

3. Be prepared to scale *EVERY* aspect of
your application: Web, DB, Mail etc.

4. Be smart, launch softly.

5. Be even smarter, don’t launch on a Friday
evening.

Before the launch
• All cocky and sure of myself

• What could go wrong?

After the launch
• A picture is worth a thousand

words

What we did (Donʼt do at home!)

What we did (Donʼt do at home!)

• Launched on a Friday afternoon, idea was
to have less traffic.

What we did (Donʼt do at home!)

• Launched on a Friday afternoon, idea was
to have less traffic.

• Site contained a function to send an alert if
database was down, when site went down,
it triggered 5,000+ emails in a few mins and
took down the mail server

What we did (Donʼt do at home!)

• Launched on a Friday afternoon, idea was
to have less traffic.

• Site contained a function to send an alert if
database was down, when site went down,
it triggered 5,000+ emails in a few mins and
took down the mail server

• Not enough slaves to allow the site to
function. Ripped apart desktop computers
to create functional DB slaves.

Key to Success

Key to Success

• Figure out the “pain” points of an
application

Key to Success

• Figure out the “pain” points of an
application

• Be prepared to scale every part of your
application.

Key to Success

• Figure out the “pain” points of an
application

• Be prepared to scale every part of your
application.

• Be prepared to sacrifice performance
for availability, chances are good you
won’t be doing the other way around

Key to Success

Key to Success

• Become omniscient and omnipotent.

Key to Success

• Become omniscient and omnipotent.

• Identify Single Points of Failure (SPoF)...

Key to Success

• Become omniscient and omnipotent.

• Identify Single Points of Failure (SPoF)...

• If you have an SPoF... guaranteed it will
fail

SPoFs and how to get
yourself fired :)

SPoFs and how to get
yourself fired :)

• Do an SPoF audit on your application,
SPoFs can be:

SPoFs and how to get
yourself fired :)

• Do an SPoF audit on your application,
SPoFs can be:

★ external dependencies (isp etc.)

SPoFs and how to get
yourself fired :)

• Do an SPoF audit on your application,
SPoFs can be:

★ external dependencies (isp etc.)

★ physical infrastructure: power.

SPoFs and how to get
yourself fired :)

• Do an SPoF audit on your application,
SPoFs can be:

★ external dependencies (isp etc.)

★ physical infrastructure: power.

★ people

SPoFs and how to get
yourself fired :)

• Do an SPoF audit on your application,
SPoFs can be:

★ external dependencies (isp etc.)

★ physical infrastructure: power.

★ people

★ servers (db, web, load, firewall, dns...)

SPoFs and how to get
yourself fired :)

• Do an SPoF audit on your application,
SPoFs can be:

★ external dependencies (isp etc.)

★ physical infrastructure: power.

★ people

★ servers (db, web, load, firewall, dns...)

★ application hooks/CRONs

Pain Point #1: The Web and File
Servers

Pain Point #1: The Web and File
Servers

• A typical PHP application with lots of
visitors will have to run on a cluster of web
servers.

Pain Point #1: The Web and File
Servers

• A typical PHP application with lots of
visitors will have to run on a cluster of web
servers.

• Centralized file server or pushed file
system?

Pain Point #1: The Web and File
Servers

• A typical PHP application with lots of
visitors will have to run on a cluster of web
servers.

• Centralized file server or pushed file
system?

• Centralized file server can be a bottleneck,
pushed file system limits some programming
options.

Pain Point #2: The Database
• How will you configure the database.

• Master/Slave?

Pain Point #2: The Database

• Sharding? More common amongst newer
social applications.

Pain Point #2: The Database

• Perhaps MySQL Proxy?

• We ran MySQL Proxy as a test on
MySQL.com, it’s getting there!

• http://forge.mysql.com/wiki/MySQL_Proxy

http://forge.mysql.com/wiki/MySQL_Proxy
http://forge.mysql.com/wiki/MySQL_Proxy

Pain Point #2: The Database

• Perhaps look at Cloud options such as
AWS.

• Allows growth at the least cost and lets
someone else handle the problem of scaling
for traffic!

Pain Point #3: The Mail Server

Pain Point #3: The Mail Server

• Most social applications depend on vast
quantities of emails to be sent out.

Pain Point #3: The Mail Server

• Most social applications depend on vast
quantities of emails to be sent out.

• What happens when your SMTP server
gives up the ghost? Do you run SMTP
servers on your web servers? Isolate the
SMTP Servers?

Pain Point #3: The Mail Server

• Most social applications depend on vast
quantities of emails to be sent out.

• What happens when your SMTP server
gives up the ghost? Do you run SMTP
servers on your web servers? Isolate the
SMTP Servers?

• We dumped mail into a MySQL Db and
sent with custom daemon.

Pain Point #4: Controlling Master/
Slave Writes

• Almost every application of this kind
obviously splits out reads to read slaves and
writes to masters.

• Use some sort of DNS based load
balancing on your DB servers to send
queries?

Pain Point #5: Data Caching

• Replicated setups == Replication Lag.

• Replicated Forum software particularly
vulnerable with increased traffic, missing
posts etc.

• Slave dependent queries for IDs etc. may
cause issues with data integrity.

Pain Point #5: Data Caching

Pain Point #5: Data Caching

• Memcached!!! When you write to the
database you write to your memcached
server, read from memcached before
reading from the database again.

Pain Point #5: Data Caching

• Memcached!!! When you write to the
database you write to your memcached
server, read from memcached before
reading from the database again.

• Are you going to the database too much?
Counts of Users, Activity etc.?

Pain Point #5: Data Caching

• Memcached!!! When you write to the
database you write to your memcached
server, read from memcached before
reading from the database again.

• Are you going to the database too much?
Counts of Users, Activity etc.?

• Before memcached, we used filesystem files
written by system processes.

Pain Point #6: The PHP Code

Pain Point #6: The PHP Code

• XDebug. If you aren’t using it. Download it,
learn it. Use it. Improve performance of
your application. (http://www.xdebug.org)

http://www.xdebug.org
http://www.xdebug.org

Pain Point #6: The PHP Code

• XDebug. If you aren’t using it. Download it,
learn it. Use it. Improve performance of
your application. (http://www.xdebug.org)

• Profile your application.

http://www.xdebug.org
http://www.xdebug.org

Pain Point #6: The PHP Code

• XDebug. If you aren’t using it. Download it,
learn it. Use it. Improve performance of
your application. (http://www.xdebug.org)

• Profile your application.

• Take a lesson from a high visibility site:
Wikipedia, run a fraction of your requests
through xdebug and profile.

http://www.xdebug.org
http://www.xdebug.org

Pain Point #6: The PHP Code

A profile of mysql.com in April 2008

Pain Point #6: Monitoring

Pain Point #6: Monitoring

• If a person falls in the forest do you hear
the PHP Fatal Error?

Pain Point #6: Monitoring

• If a person falls in the forest do you hear
the PHP Fatal Error?

• Be omniscient in your applications. If
something goes wrong do not wait for
someone to tell you.

Pain Point #6: Monitoring

• If a person falls in the forest do you hear
the PHP Fatal Error?

• Be omniscient in your applications. If
something goes wrong do not wait for
someone to tell you.

• Build monitoring into the application, but
do you want High Performance?

Pain Point #6: Monitoring

Pain Point #6: Monitoring

• Capture your errors and logging into log
files which are then monitored.

Pain Point #6: Monitoring

• Capture your errors and logging into log
files which are then monitored.

• Establish a good monitoring tool which
monitors not only the Servers but your
Application.

Pain Point #6: Monitoring

• Capture your errors and logging into log
files which are then monitored.

• Establish a good monitoring tool which
monitors not only the Servers but your
Application.

• Shameless plug for both MySQL Enterprise
Monitoring and my own open source
BigDaddy (bigdaddymonitor.org) which
grew out of all these pain points

Pain Point #7: Your SQL Queries

Pain Point #7: Your SQL Queries

• In the end a PHP/MySQL application lives
and dies on the strength of your queries.

Pain Point #7: Your SQL Queries

• In the end a PHP/MySQL application lives
and dies on the strength of your queries.

• Make sure that you have good indexes on
your tables. EXPLAIN always.

Pain Point #7: Your SQL Queries

• In the end a PHP/MySQL application lives
and dies on the strength of your queries.

• Make sure that you have good indexes on
your tables. EXPLAIN always.

• Make sure that you have query caching
turned on go examine your slow query log.

Pain Point #7: Your SQL Queries

Pain Point #7: Your SQL Queries

• Queries do not always scale!

Pain Point #7: Your SQL Queries

• Queries do not always scale!

• Use some sort of query analyzer,
custom or third party.

Pain Point #7: Your SQL Queries

• Queries do not always scale!

• Use some sort of query analyzer,
custom or third party.

• When you develop, try to test
expensive queries against a proper
data set size.

Pain Point #8: Ajax, Javascript

Pain Point #8: Ajax, Javascript

• App performance is what the client sees,
not what the server/server-op sees

Pain Point #8: Ajax, Javascript

• App performance is what the client sees,
not what the server/server-op sees

• DB Setup tuned for “Web 2.0” apps? Ajax
applications tend to be less read heavy and
more write heavy.

Pain Point #8: Ajax, Javascript

• App performance is what the client sees,
not what the server/server-op sees

• DB Setup tuned for “Web 2.0” apps? Ajax
applications tend to be less read heavy and
more write heavy.

• InnoDB versus MyISAM for primary key
lookups.

Pain Point #8: Ajax, Javascript
Client tuning is essential as much as server
tuning. YSlow is one option:

Pain Point #9: All the other things

Pain Point #9: All the other things

• Over the years pain points have come in all
shapes and sizes, including our apache
logs :)

Pain Point #9: All the other things

• Over the years pain points have come in all
shapes and sizes, including our apache
logs :)

• We ended up creating a sharded db system
with a simple perl script to dump web logs
into a MySQL database.

Pain Point #9: All the other things

• Over the years pain points have come in all
shapes and sizes, including our apache
logs :)

• We ended up creating a sharded db system
with a simple perl script to dump web logs
into a MySQL database.

• Oddly worked as well if not better than a
file system.

Final thought...

Final thought...

• Murphy's Extended Law: If a series of
events can go wrong, they will do so in the
worst possible sequence.

Final thought...

• Murphy's Extended Law: If a series of
events can go wrong, they will do so in the
worst possible sequence.

★ NFS Crash

Final thought...

• Murphy's Extended Law: If a series of
events can go wrong, they will do so in the
worst possible sequence.

★ NFS Crash

★ File system corrupt

Final thought...

• Murphy's Extended Law: If a series of
events can go wrong, they will do so in the
worst possible sequence.

★ NFS Crash

★ File system corrupt

★ DB Crash, Table corrupted

Final thought...

• Murphy's Extended Law: If a series of
events can go wrong, they will do so in the
worst possible sequence.

★ NFS Crash

★ File system corrupt

★ DB Crash, Table corrupted

★ Backup corrupted by another sequence
of events.

Final thought...

• Murphy's Extended Law: If a series of
events can go wrong, they will do so in the
worst possible sequence.

★ NFS Crash

★ File system corrupt

★ DB Crash, Table corrupted

★ Backup corrupted by another sequence
of events.

★ I was on holiday

The moral of this sordid tale

The moral of this sordid tale

• Murphy Loves Web Application
Developers.

The moral of this sordid tale

• Murphy Loves Web Application
Developers.

• Everything goes wrong at some point

The moral of this sordid tale

• Murphy Loves Web Application
Developers.

• Everything goes wrong at some point

• Just be prepared

The moral of this sordid tale

• Murphy Loves Web Application
Developers.

• Everything goes wrong at some point

• Just be prepared

• Eliminate every SPoF (Single Point of
Failure) in your system.

