
Patterns and OOP in 
PHP

George Schlossnagle
<george@omniti.com>



Patterns catalog solutions to categories of 
problems

They consist of

A name

A description of their problem

A description of the solution

An assessment of the pros and cons of the 
pattern

What are Patterns?



Not so much.  Patterns sources outside OOP 
include:

Architecture (the originator of the paradigm)

User Interface Design (wizards, cookie 
crumbs, tabs)

Cooking (braising, pickling)

What do patterns have 
to do with OOP?



Brining
Problem: Make lean meat jucier

Solution: Submerge the meat in a salt and 
flavor infused liquid.

Discussion:  Salt denatures the meat proteins, 
allowing them to trap liquid between them 
more efficiently.

Example: Mix 1C of table salt and 1C of 
molasses into 1G of water.  Bring to a boil to 
dissolve.  Submerge pork roast for 2 days.

A tasty design pattern



OOP is paradigm more than a feature set.

Everyone is a bit different, and they all think 
they're right

The classic difference

click(button)
vs.
button.click()

What is OOP?



Let’s try to define OOP through the values it 
tries to promote.

Allow compartmentalized refactoring of 
code

Promote code reuse

Promote extensability

Is OOP the only solution for this?

Of course not.

Rephrase: What is its 
motivation?



Encapsulation is about grouping of related 
properties and operations into classes.

Classes represent complex data types and the 
operations that act on them. An object is a 
particular instance of a class.  For example 
‘Dog’ may be a class (it’s a type of thing), 
while Grendel (my dog) is an instance of that 
class.

Encapsulation



Classses as dictionaries are a common idiom, 
seen in C:
typedef struct _entry {
    time_t date;
    char *data;
    char *(*display)(struct _entry *e);
} entry;
e->display(e);

You can see this idiom in Perl and Python, both 
of which prototype class methods to explicitly 
grab $this (or their equivalent). 

Are Classes Just 
Dictionaries?



PHP is somewhat different , since PHP functions 
aren't really first class objects. Still, PHP4 
objects were little more than arrays.

The difference is coherency.  Classes can be 
told to automatically execute specific code on 
object creation and destruction.

 class Simple {
  function __construct() {/*...*/}
  function __destruct() { /*...*/}
}

Are Classes Just 
Dictionaries?



Leaving a Legacy

A class can specialize (or extend) another class 
and inherit all its methods, properties and 
behaviors.
This promotes

Extensibility
Reusability
Code Consolidation



A Simple Inheritance 
Example
class Dog  {
  public function __construct($name) {/*...*/}
  public function bark() { /*...*/ }
  public function sleep() { /*...*/}
  public function eat() { /*...*/}
}
class Rottweiller extends Dog {
  public function intimidate($person);
}



Inheritance and the issue 
of Code Duplication
Code duplication is a major problem for 
maintainability.  You often end up with code 
that looks like this:
function foo_to_xml($foo) {
  // generic stuff
  // foo-specific stuff
}

function bar_to_xml($bar) {
  // generic stuff
  // bar specific stuff
}



The Problem of Code 
Duplication
You could clean that up as follows:
function base_to_xml($data) { /*...*/ }
function foo_to_xml($foo) {
  base_to_xml($foo);
  // foo specific stuff
}

function bar_to_xml($bar) {
  base_to_xml($bar);
  // bar specific stuff 
}

But it’s hard to keep base_to_xml() working for 
the disparate foo and bar types.



The Problem of Code 
Duplication
In an OOP style you would create classes for 
the Foo and Bar classes that extend from a 
base class that handles common functionality.
class Base {
  public function toXML() {  /*...*/ }
}
class Foo extends Base {
  public function toXML() { 
    parent::toXML();
    // foo specific stuff
  }
}

class Bar extends Base {
  public function toXML() { 
    parent::toXML();
    // Barspecific stuff
  }
}

Sharing a base class promotes sameness.



Multiple inheritance is confusing.  If you inherit 
from ClassA and ClassB, and they both define 
method foo(), whose should you inherit?

Interfaces allow you to specify the functionality 
that your class must implement.

Type hints allow you to require (runtime 
checked) that an object passed to a function 
implements or inherits certain required facilities.

Multiple Inheritance



interface Displayable {
  public function display();
}
class WeblogEntry implements Displayable {
  public function display() { /*...*/}
}
function show_stuff(Displayable $p) {
  $p->display();
}
vs.
function show_stuff($p) {
  if(method_exists($p, ‘display’)) {
    $p->display();
  }
}

Problem is those checks need to be added in 
every function. 

Multiple Inheritance



Abstract classes provide you a cross between a 
‘real’ class and an interface.  They are classes 
where certain methods are defined, and other 
methods are only prototyped. 
Abstract classes are useful for providing a base 
class that should never be instantiated.
abstract class CalendarEntry {
  abstract function display();
  public function fetchDetails() { /*...*/}
  public function saveDetails() {/*...*/}
}

Abstract Classes



One of the notions of OOP is that your 
package/library should have a public API that 
users should interact with.  What happens 
behind the scenes is none of their business, as 
long as this public API is stable. This separation 
is often referred to as ‘data hiding’ or 
‘implementation hiding’.  

Some languages (Perl, Python) rely on a 
‘gentleman’s contract’ to enforce this 
separation, while other languages enforce it as 
a language feature.

Public Relations



PHP implements strict visibility semantics. Data 
hiding eases refactoring by controlling what 
other parties can access in your code.

public anyone can access it

protected only descendants can access it 

private only you can access it

final no one can re-declare it.

Why have these in PHP?  Because sometimes 
self-discipline isn’t enough.

Data Hiding



Suppose we have a calendar that is 
a collection of entries.  Procedurally 
dislpaying all the entries might look 
like:
foreach($entries as $entry) {
  switch($entry->type) {
    case 'professional':
      display_professional_entry($entry);
        break;
    case 'personal':
      display_personal_entry($entry); break;
  }
}

Minimizing Special Case 
Handling



In an OOP paradigm this would look like:

foreach($entries as $entry) {
  $entry->display();
}

The key point is we don't have to modify this 
loop to add new types.  When we add a new 
type, that type gets a display() method so it 
know how to display itself, and we’re done.
(p.s. this is a good case for the aggregate pattern, shown later)

Simplicity Through 
Polymorphism



Weren’t we talking about 
patterns...?



Problem: You only want one instance of an 
object to ever exist at one time

Solutions:

PHP4: Use a factory method with static 
cache

PHP4: Use a global cache and runtime 
instance mutability

PHP5: Use static class attributes 

Singleton Pattern



Description:
class Singleton {
  static private $instance;
  private function __construct() {}
  static public function instance() {
    if(!self::$instance) {
      self::$instance = new Singleton();
    }
    return self::$instance;
  }
}
$s = Singleton::instance();

Singleton Pattern



Static properties and methods belong to a class 
as a whole, not a particular instance.
To reference your own static properties, you 
use:
$my_prop = self::$prop;

Static properties are not inherited (they are 
compile-time resolved).To reference a parent’s 
property use:
$dads_prop = parent::$prop;

To reference an external classes property use:
$class_prop = Class::$prop;

PPP still applies!

Static Properties and 
Methods



Problem: You have collections of items that you 
operate on frequently with lots of repeated 
code.

Remember our calendars:
foreach($entries as $entry) { 
  $entry->display();
}

Solution: Create a container that implements  
the same interface, and perfoms the iteration 
for you.

Aggregator Pattern



class EntryAggregate extends Entry {
  protected $entries;
  ...
  public function display() {
    foreach($this->entries as $entry) {
      $entry->display();
  }
  public function add(Entry $e) {
    array_push($this->entries, $e);
  } 
}

By extending Entry, the aggregate can actually 
stand in any place that entry did, and can itsefl 
contain other aggregated collections.

Aggregator Pattern



Problem: You need to be able to iterate 
through an aggregation.

Solution: Implement all the operations 
necessary to logically iterate over an object.  
In PHP this is now a built in facility so that 
object implementing the Iterator interface can 
be used in the language array constructs like 
foreach().

Iterator Pattern



An Infinite Iterator
class EndlessSquares implements 
Iterator {
  private $idx = 0;
  function key() {
    return $this->idx;
  }
  function current() {
    return $this->idx * $this->idx;
  }
  function next() {
    $this->idx++;
    return $this;
  }
  function valid() {
    return true;
  }
  function rewind() {
    $this->idx = 0;
  }
}

es = new EndlessSquares;
foreach($es as $square) {
    echo "$sq\n";
}



Why not just use:
foreach($aggregate as $item) { /*...*/ } 

Aren't we making life more difficult than need 
be?
No!  For simple aggregations the above works 
fine, but not everything is an array. What 
about:

Buffered result sets
Directories
Anything not already an array

Aren’t Iterators 
Pointless in PHP?



Problem: You need to provide access to an 
object, but it has an interface you don’t know 
at compile time.

Solution: Use accessor/method overloading to 
dynamically  dispatch methods to the object.

Discussion: This is very typical of RPC-type 
facilities like SOAP where you can interface 
with the service by reading in a definitions file 
of some sort at runtime.

Proxy Pattern



class SOAP_Client {
    public $wsdl;
    public function __construct($endpoint) {
        $this->wsdl = WSDLManager::get($endpoint);
    }   
    public function __call($method, $args) {
        $port = $this->wsdl->getPortForOperation($method);
        $this->endpoint = $this->wsdl->getPortEndpoint($port);
        $request = SOAP_Envelope::request($this->wsdl);
        $request->addMethod($method, $args);
        $data = $request->saveXML();
        return SOAP_Envelope::parse($this->endpoint, $data);
    }
}

Proxy Pattern in PEAR 
SOAP



Problem: You want an object to automatically 
notify dependents when it is updated.

Solution: Allow 'observer' to register 
themselves with the observable object.

Discussion: An object may not apriori know 
who might be interested in it. The Observer 
pattern allows objects to register their interest 
and supply a notification method.  

Observer Pattern



class Observable {
  protected $observers;
  public function attach(Observer $o) {
    array_push($this->observers, $o);
  }
  public function notify() {
    foreach($this->observers as $o) {
      $o->update();
    }
  }
}
interface Observer {
  public function update();
}

Concrete Examples: logging facilities: email, 
debugging, SOAP message notifications.  NOT 
Apache request hooks. 

Observer Pattern



THANKS!

Slides for this talk will be available 
shortly at 
http://www.omniti.com/~george/talks/

A longer version with 3 hours of info 
and a greater focus on patterns and 
advanced features will be presented 
by Marcus Boerger and myself at 
OSCON in July.  Come see us there!

Shameless book plug: Buy my book, 
you’ll like it.  I promise.


