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What Is Cross Site Scripting? 

Injecting Scripts  

Into  

Otherwise Benign and Trusted  

Browser Rendered Content 



Example XSS 

$html = ‘<script>alert(“hi”);</script>’; 

echo “<b>$html</b>”; 

 

 

<b><script>alert(“hi”);</script></b> 



Two Types Of XSS 

• Transient XSS 

–Passes Data Through Request Data 

–Affects Only The Tainted Request(s) 

• Persistent XSS 

–Stores Data On The Server 

–Affects All Requesters (visitors) 



Before We Talk About XSS, 
We Need To Talk About: 

Filter In, Escape Out 



What Is “Filter In”? 

• Can have 2 meanings based on context 

– Removing or stripping unsafe/invalid content 

– Rejecting unsafe/invalid content 

• All input should be filtered 

– Would you accept “2f” as an age? 

• What is “input”? 

– Anything that is not hard coded into your code 

– This includes your database… 



Wait, Does That Mean I Need To 
Filter Everything Twice? 

Yes. 



What Is “Escape Out”? 

• Escaping means to make content “safe” for a 
context 

• All output must be escaped 
– How it should be escaped depends upon context 

• SQL requires different techniques than HTML 

– It should be escaped as close to output as possible 

• What is “Output”? 
– Anything that leaves the memory of the program 

• SQL, Files, HTML, REST, Headers, XML, JSON, etc 



Wait, Does That Mean I Need To 
Escape Everything Multiple Times? 

Yes. 



What Are The Parts Of HTML? 

• Nodes: <a>  (the “a”) 
• Values: <b>foo</b>  (the “foo”) 
• Attribute Names: <c d=“e”/>  (the “d”) 
• Attribute Values: <f g=“h” />  (the “h”) 
• CSS Identifiers: .foo {}  (the “.foo”) 
• CSS Literals: .foo {color:”bar”}  (the ”bar”) 
• JS Code: alert(‘g’)  (the “alert”) 
• JS Literals: alert(‘h’)  (the “h”) 
• HTML Comments: <!– bar   (the “bar”) 



Let’s Talk About Escaping First 



Never Allow Unfiltered User Input : 

• Node Names 
– <foo /> 

• Attribute Names 
– <a bar=“” /> 

• HTML Comments 
– <!– Foo   

• CSS Identifiers 
– .baz{foo} 

• JS Code 
– biz(); 



You Cannot Escape Content For 
Those HTML Components! 



Values 

• <foo>bar</foo> 

• Need To Escape The Following Characters: 

– & -> &amp; 

– “ -> &quot; 

– < -> &lgt; 

– > -> &gt; 

– ‘ -> &#x27; 

• Prevents Injection of New Tags 



Attribute Values 

• Always quote the attribute value 

– <foo bar=“baz” /> 

• Need To Escape The Following Characters: 

– & -> &amp; 

– “ -> &quot; 

– < -> &lgt; 

– > -> &gt; 

– ‘ -> &#x27; 



JS Literals 

• Always quote string literals 

• Always cast numeric literals 

• Need To Escape The Following Characters: 

– All Non-Alpha Numeric Characters 

• Use \xNN format 

• Be Aware That Not All Literals Can Be Escaped 

– setInterval(‘foo’)  “Foo” should never be 
unfiltered 



Tools Available In PHP For 
Escaping 



htmlspecialchars() 

• Useful for escaping Values and Attribute 
Values 

• Should always pass “ENT_QUOTES” flag 

• Should always set the character set 

 

htmlspecialchars($input, ENT_QUOTES, “UTF-8”) 



preg_replace_callback() 

• Useful for escaping JS literals 
 

preg_replace_callback( 
 ‘/*^a-z0-9+/i’, 
 function ($match) { 
  $chr = dechex(ord($match[0])); 
  return ‘\\x’. 
   str_pad($dechex, 2, ‘0’, STR_PAD_LEFT); 
 }, 
 $data 
); 



OWASP’s ESAPI 

• Useful for all HTML escaping needs 

• Has multiple methods for escaping 

• https://www.owasp.org/index.php/ESAPI 

 

$encoder->encodeForHTML($data); 

$encoder->encodeForHTMLAttribute($data); 

$encoder->encodeForJavaScript($data); 



Smarty 

• Templating Engine for PHP 

• Does not escape anything by default! 

– Cannot be told to do so 

• Must explicitly use special syntax to escape 

 

{$var|html} 



Twig 

• Templating Engine for PHP 

– Similar to Smarty, but cleaner and more powerful 

• Does Intelligent Escaping Automatically 

• Can be turned off as needed 

 

{{ var }} 



Let’s Talk Filtering 



Filtering Guidelines 

• Always Favor White-listing over Black-listing 
– Filtering against valid values is more robust 

• Always do it for all input 
– Including Content From The Database! 

– Allows changes to the filter to propagate 
automatically 

• Identify Improper Input and Notify The User 
– Gives User a Chance To Fix The Issue 

– Also gives immediate feedback to an attacker 



What Can You Safely Filter? 

• All User Supplied Data 

• Any part of HTML, if filtered properly, can be 
supplied by user input 

 

• Be Careful When Filtering Sensitive Elements: 

– URLs 

– JavaScript Code 

– HTML Content 



Filtering HTML 

• Check For Improper Tag Structure 

– <a><b></a></b> 

• Check For “Bad” Tags: 

– style, script, comments, etc 

• Check For “Special” Attributes 

– href, src, js events, style, etc 

– Make sure they are valid, and not JS (or remove 
them entirely) 

 



Tools Available In PHP For 
Filtering 



strip_tags() 

• Removes all tags except those explicitly 
allowed 

• Removes all attributes 

– Not effective if you need links, etc 

• Removes everything that is wrapped by < > 

– May break user’s intent 

 

strip_tags($data, ‘<b><u><i>’); 



HTMLPurifier 

• Library to sanitize HTML 

• Very Smart  

– Cleans up document structure 

– Allows safe attributes 

– Highly configurable 

• http://htmlpurifier.org/ 

 

$purifier->purify($data); 



Don’t Roll Your Own! 

HTML Sanitization Is Not A Trivial 
Problem To Solve 



The XssBadWebApp 

• Designed To Be A “Real World” Application 

• Several Known XSS Vulnerabilties 

– No known non-xss vulnerabilities 

• Designed For Educational Use Only 

• Released under the BSD License 

• Available At GitHub 

– github.com/ircmaxell/XssBadWebApp 



Demonstration Time! 



Quick Review 

• There Is No “Magic” Solution 

• Always Filter Input 

– Even When “Input” Comes From The Database 

• Always Escape Output 

– Escaping Is Context Dependent 

• Several Tools Are Available 

– Use Them! 



Questions? 

 

Comments? 

 

Snide Remarks? 
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