
www.nyphp.com / www.nyphp.org

6/18/2009 © 2008 New York PHP, LLC 1

MySQL and PHP – State of the Union
Connectors, Best Practices, Performance, and the “Cloud”

Hans Zaunere, Managing Member

Web Performance for PHP Developers

Web Performance Meetup/Etsy.com

June 16th, 2009

Scaling & Optimizing MySQL

Sun Microsystems

December 16th, 2008

New York City MySQL Meetup

December 9th, 2008

CommunityOne East

Sun Microsystems

March 18th, 2009

www.nyphp.com / www.nyphp.org

6/18/2009 © 2008 New York PHP, LLC 2

Overview

• Introduction

• Connectors

• Best Practices and Techniques

• Performance and Scaling

• Scaling and Performance

• Clouds and Smog

• Questions/Resources

www.nyphp.com / www.nyphp.org

6/18/2009 © 2008 New York PHP, LLC 3

LAMP

BAMP

OSAMP

SAMP

WAMP

XAMP

DAMP

Introduction

• Apache/MySQL/PHP

• Other variations on the theme

– But the fundamentals remain

AMP Needs No Introduction

PHP glues together high-

speed database with high-

speed external libraries

www.nyphp.com / www.nyphp.org

6/18/2009 © 2008 New York PHP, LLC 4

Connectors…

• mysql – The Classic

• mysqli – Improving a Classic

• PDO – Abstracted Abstraction

• mysqlnd – A PHP Native

I’m a

Pick the Right Connector

www.nyphp.com / www.nyphp.org

6/18/2009 © 2008 New York PHP, LLC 5

Connectors…

• http://www.php.net/mysql

• Still one of the fastest and quickest to implement

• Results are always strings

• Very mature and proven code

• Strictly functional

• No binary protocol support

• Always be real

– mysql_real_escape_string() EVERYTHING

mysql Extension - The Classic

http://www.php.net/mysql

www.nyphp.com / www.nyphp.org

6/18/2009 © 2008 New York PHP, LLC 6

Connectors…

• http://www.php.net/mysqli

• Recommended for all new development

• Supports new and old MySQL features

• Prepared statements and binary protocol available

– Result sets are returned as PHP native types

– Some advantages/disadvantages

• Choice between functional or object-based code

• Just got persistent connections

– Now “idiot proof” and yields almost 7x connections/second gain

mysqli Extension – Improving a Classic

http://www.php.net/mysqli

www.nyphp.com / www.nyphp.org

6/18/2009 © 2008 New York PHP, LLC 7

Connectors…

• http://www.php.net/pdo

http://www.php.net/pdo-mysql

http://dev.mysql.com/tech-resources/articles/mysql-pdo.html

• PHP Data Object

• Provides consistent OO interface to multiple database

– May deviously hide differences between databases

Know thy configuration and available database features

• Segmentation fault issues early on – still gun shy

• Still being developed, including support for mysqlnd

• Recommended only if abstraction is an immediate

requirement

PDO – Abstracted Abstraction

http://www.php.net/pdo
http://www.php.net/pdo-mysql
http://www.php.net/pdo-mysql
http://www.php.net/pdo-mysql
http://dev.mysql.com/tech-resources/articles/mysql-pdo.html
http://dev.mysql.com/tech-resources/articles/mysql-pdo.html
http://dev.mysql.com/tech-resources/articles/mysql-pdo.html
http://dev.mysql.com/tech-resources/articles/mysql-pdo.html
http://dev.mysql.com/tech-resources/articles/mysql-pdo.html

www.nyphp.com / www.nyphp.org

6/18/2009 © 2008 New York PHP, LLC 8

Connectors…

• http://blog.ulf-wendel.de/ (current)

http://blog.felho.hu/what-is-new-in-php-53-part-3-mysqlnd.html

• Optional backend library for mysql/mysqli/PDO

• Takes advantage of PHP/Zend Engine internal structure

• Supports async queries

• Deprecates --enable-mysqlnd-threading

• Long time in coming but still apparently developed

• Available in PHP 5.3 (alpha)

• Not recommended for prime time quite yet

mysqlnd Library – A PHP Native

http://blog.ulf-wendel.de/
http://blog.ulf-wendel.de/
http://blog.ulf-wendel.de/
http://blog.felho.hu/what-is-new-in-php-53-part-3-mysqlnd.html
http://blog.felho.hu/what-is-new-in-php-53-part-3-mysqlnd.html
http://blog.felho.hu/what-is-new-in-php-53-part-3-mysqlnd.html
http://blog.felho.hu/what-is-new-in-php-53-part-3-mysqlnd.html
http://blog.felho.hu/what-is-new-in-php-53-part-3-mysqlnd.html
http://blog.felho.hu/what-is-new-in-php-53-part-3-mysqlnd.html
http://blog.felho.hu/what-is-new-in-php-53-part-3-mysqlnd.html
http://blog.felho.hu/what-is-new-in-php-53-part-3-mysqlnd.html
http://blog.felho.hu/what-is-new-in-php-53-part-3-mysqlnd.html
http://blog.felho.hu/what-is-new-in-php-53-part-3-mysqlnd.html
http://blog.felho.hu/what-is-new-in-php-53-part-3-mysqlnd.html
http://blog.felho.hu/what-is-new-in-php-53-part-3-mysqlnd.html
http://blog.felho.hu/what-is-new-in-php-53-part-3-mysqlnd.html
http://blog.felho.hu/what-is-new-in-php-53-part-3-mysqlnd.html
http://blog.felho.hu/what-is-new-in-php-53-part-3-mysqlnd.html
http://blog.felho.hu/what-is-new-in-php-53-part-3-mysqlnd.html
http://blog.felho.hu/what-is-new-in-php-53-part-3-mysqlnd.html

www.nyphp.com / www.nyphp.org

6/18/2009 © 2008 New York PHP, LLC 9

Connectors

• Stick with - or upgrade to - mysqli

…Survey Says

www.nyphp.com / www.nyphp.org

6/18/2009 © 2008 New York PHP, LLC 10

Best Practices…

• Modern applications should use mysqli

• Know your hardware architecture

– Use x64 where possible for RAM

– Avoid mixed 32/x64 environments/libs

– PHP needs --with-libdir=lib64

– In production environments strive to have a pure lib64 system

– Install and link against the right libraries for your architecture

• Know your compile options

– Don’t let ./configure guess

– --with-mysqli=/usr/bin/mysql_config - specify file!

– --with-mysqli=mysqlnd (alpha)

• Know your client/server versions

– Make sure they match as closely as possible

www.nyphp.com / www.nyphp.org

6/18/2009 © 2008 New York PHP, LLC 11

…and Techniques…

• mysqli objects or functions? Your choice but…

– Objects may provide a more flexible, elegant and fool-proof

implementation

• Be explicit

– Specify the MySQL resource or result in every function

– mysqli’s OO implementation enforces better practices

$MYDB = mysql_connect('www.nyphp.com','root','=ro0t--');

// BAD

$R = mysql_query('SELECT * FROM BB.Account');

// GOOD

$R = mysql_query('SELECT * FROM BB.Account',$MYDB);

www.nyphp.com / www.nyphp.org

6/18/2009 © 2008 New York PHP, LLC 12

…and Techniques

• Be prepared with prepared statements?

– Consider what the actual benefits are for your application

– Not all applications may benefit

• What’s wrong with this picture?

$R = mysql_query('SELECT * FROM BB.Account',$MYDB);

$R2 = array();

while(($R2[] = mysql_fetch_assoc($R)) !== FALSE);

www.nyphp.com / www.nyphp.org

6/18/2009 © 2008 New York PHP, LLC 13

Performance and Scaling…
www.mysqlperformanceblog.com

• Consider use case

– Need to support varied queries in a framework environment?

– … or highly repetitive queries in a batch environment?

• Consider highest-cost resources for your application

– RAM? CPU? Database round-trips?

• Consider your data’s flavor

– Big blobs? Small strings and ints?

– Lots of rows? Small result sets?

– Complexity and relationships?

www.nyphp.com / www.nyphp.org

6/18/2009 © 2008 New York PHP, LLC 14

Performance and Scaling…

• Consider memory usage vs CPU

– Storing results as an array of arrays (non-columnar)

– mysqli_result_fetch_all(), mysqli_result_fetch_row(), etc.

– Storing results as an columnar array

– mysql_stmt_fetch_column() available in C but not in ext/mysqli (NEEDED)

// 1663 rows

$R = mysql_query('SELECT * FROM BB.Account',$MYDB);

$R2 = array();

// Non-columnar 0.034s 3.99mb

while(($T = mysql_fetch_assoc($R)) !== FALSE)

$R2[] = $T;

// Columnar 0.048s 41.18% 3.37mb -15.54%

while(($T = mysql_fetch_assoc($R)) !== FALSE)

{

foreach($T as $Col => $Val)

$R2[$Col][] = $Val;

}

www.nyphp.com / www.nyphp.org

6/18/2009 © 2008 New York PHP, LLC 15

Performance and Scaling…
Connectors - Connectors - Connectors

• Simple benchmarking of the current Connector scene

• 500 executions of a simple SELECT

• Retrieving 1663 rows each time

mysql> SELECT * FROM BB.Account

`AccountGID` bigint(20)

`R_UserGID` bigint(20)

`InsertedTS` timestamp

`UpdatedTS` timestamp

`LastLoginTS` timestamp

`Status` varchar(31) collate utf8_unicode_ci

`Type` varchar(31) collate utf8_unicode_ci

`Admin` tinyint(3)

`Bucks` decimal(15,2)

`BID` varchar(11) collate utf8_unicode_ci

`CurrentAlias` varchar(63) collate utf8_unicode_ci

`Description` varchar(1023) collate utf8_unicode_ci

www.nyphp.com / www.nyphp.org

6/18/2009 © 2008 New York PHP, LLC 16

Performance and Scaling…

store_result

(buffered)

use_result

(unbuffered)
Notes

ext/mysql 18.2s 10.0s
mysql_query()

mysql_unbuffered_query()

ext/mysqli 19.2s 10.0s mysqli_result::free() required for unbuffered

ext/mysqli::mysqlnd 20.7s 10.0s

mysqli_result::fetch_all()

not better than for() iteration

mysqli_result::free() required for unbuffered

Text Queries (Text Protocol)

• All values available as PHP strings, regardless of column’s type

• NULLs generally remain as NULLs in PHP

• Always *_free_result() as a best practice

• Required for unbuffered queries

www.nyphp.com / www.nyphp.org

6/18/2009 © 2008 New York PHP, LLC 17

Performance and Scaling…

store_result

(buffered)

use_result

(unbuffered)
Notes

ext/mysqli 12.5s/12.3s 8.4/8.2s prepare on execute / prepare once

ext/mysqli::mysqlnd 14.6s/14.2s 8.4s/8.2s mysqli_result::free() required for unbuffered

ext/mysqli 26.6s 21.0s

additional PHP coding to mimic

mysqli_result::fetch_assoc() behavior
ext/mysqli::mysqlnd

29.2s 22.4s

Prepared Statements (Binary Protocol)

• Each prepare requires an additional database roundtrip

• http://forge.mysql.com/worklog/task.php?id=3359

• All values available as PHP types corresponding to column type

• *_free_result() and *_stmt_close() not always needed

• But recommended as best practice

http://forge.mysql.com/worklog/task.php?id=3359

www.nyphp.com / www.nyphp.org

6/18/2009 © 2008 New York PHP, LLC 18

Performance and Scaling…
Observations and Upshots

• No significant difference between localhost vs remote

• …as it relates to buffered vs. unbuffered

• mysqlnd has actually appeared slower overall

• Slowdown in handling of PHP variables – WHAT?

• Framework operations

• Handle a variety of queries

• Typically pull rows for later processing

• Unbuffered (use_result) is faster but..

• Avoid lengthy per-row processing retrieval as the tables are

locked until all rows are fetched (mostly a MyISAM problem)

• Use buffered (store_result) in this case

www.nyphp.com / www.nyphp.org

6/18/2009 © 2008 New York PHP, LLC 19

Performance and Scaling…
Observations and Upshots

• Specific/batch operations

• Prepared statements are better

• Large data, highly repetitive

• Not well implemented for general query backend

• Complex logic required to mimic array/object row fetching –

SHAME

• Generally - or - all things considered…

• No huge difference between prepared and text queries

• Prepared problematic depending on data structures required

YMIGTV – Your Mileage Is Guaranteed To Vary

www.nyphp.com / www.nyphp.org

6/18/2009 © 2008 New York PHP, LLC 20

Performance and Scaling…
Optimize Optimize Optimize

• Buffers and configuration

• Tune buffers for storage engines and operations

• Queries

• Indexes and correct usage absolutely critical

• Avoid automatic query generation

• WRITE QUERIES CAREFULLY

• Hardware

• RAM is fast but disks can be too… pick your battles

• Augment CPU for crunch-intensive applications

MySQL Responds Very Well To The Right TLC

www.nyphp.com / www.nyphp.org

6/18/2009 © 2008 New York PHP, LLC 21

Performance and Scaling…
I’ll Say It Again

• Buffers and configuration

• Architect the storage engines/schema from the outset

• Tune the right buffers (key_buffer_size, innodb_*,

heap, etc)

• Queries

• Try to use numeric keys

• Double check EXPLAIN – left/to/right/prefixed

• Partitioning and disk layout

• Be careful with sub-queries and temp. tables

Convenience Kills Performance

MySQL Will Kill You Without TLC

www.nyphp.com / www.nyphp.org

6/18/2009 © 2008 New York PHP, LLC 22

…Scaling and Performance
Scaling Performance…?

• Define scaling for your application and requirements

• Frequent or Complex functional changes vs. moderate traffic

• Functional Scaling

• Stagnant or Simple functional changes vs. huge traffic

• Traffic Scaling

• Sharding i.e. Application Managed Partitioning

• Functional vs. Key vs. Combination

• Be ready for complexity – Bring in expertise

• Add in memcached for shard recombination caching

www.nyphp.com / www.nyphp.org

6/18/2009 © 2008 New York PHP, LLC 23

Scaling and Performance
Scaling Performance…?

• Replication – Tried and True

• Able to handle very heavy load if done correctly

• Comfortable with both Functional and Traffic scaling

• Master-Master is an option if application is aware

• MySQL Cluster

• Can provide some of the best performance in the industry…

• … but only in specific cases

• Pairs well with Sharding as a replacement for memcached

• Keep tabs on your data’s path, lifecycle and type

• Know where it’s come from, what it’s doing, and where it’s going

Know Thy Data – Love Thy Data

www.nyphp.com / www.nyphp.org

6/18/2009 © 2008 New York PHP, LLC 24

Clouds and Smog
Wait, what does that mean?

• Keep Your Feet On the Ground – And Your Head Out of the Cloud

• Clouds mean a lot of different things right now

• Don’t put everything on one server – duh

• There’s no silver bullet – Don’t try to cheat

• Give it time, progress is being made

• No cloud will simply scale a database – why…?

• Cloud isn’t parallel processing (yet)

• Varying types of Clouds

• Application/API - Azure, Google Apps

• Virtualization - Sun, EC2/Xen, VZ, VMWare

• Start-up marketing fluff – BE WARY

It’s All About Architecture and Optimization

ALWAYS

www.nyphp.com / www.nyphp.org

6/18/2009 © 2008 New York PHP, LLC 25

Thank You

hans.zaunere@nyphp.com

For renowned online support, New York PHP Mailing Lists

are free and available to anyone:

http://www.nyphp.org/mailinglists.php

MySQL SIG:

http://lists.nyphp.org/mailman/listinfo/mysql

http://www.nyphp.org/mailinglists.php
http://lists.nyphp.org/mailman/listinfo/mysql

