Introduction To PHP Image Functions

by Jeff Knight of New York PHP

and
are available.

O

ZDME RIGHTS RESERYED
This work is licensed under a

http://www.nyphp.org/content/presentations/GDintro/[9/12/2009 6:29:02 PM]

http://www.nyphp.org/content/presentations/
http://www.nyphp.org/phundamentals/
http://www.nyphp.org/
http://creativecommons.org/licenses/by-nc-sa/2.0/
http://creativecommons.org/licenses/by-nc-sa/2.0/

RTFM & YMMV

RTFM & YMMV

The read, manipulate, and output image streams by
accessing functions provided by the external GD library

(), which in turn, requires a variety of other
libraries to support a number of image formats & font systems.

Since PHP 4.3 the GD library is bundled and installed by default.

In previous versions, to enable GD-support configure PHP --with-gd[=DIR],
where DIR is the GD base install directory. To use the recommended
bundled version of the GD library (which was first bundled in PHP 4.3.0),
use the configure option --with-gd. In Windows, you'll include the GD2
DLL PHP_gd2.dll as an extension in PHP.ini.

You can find a good, detailed guide to compiling and enabling GD in PHP
by in the

array gd_info (void)
Returns an associative array describing the version and capabilities of the installed GD library.

<?PHP print_r(gd_info()); ?>

Array
(
[GD Version] => bundled (2.0.34 compatible)
[FreeType Support] => 1
[FreeType Linkage] => with freetype
[TiLib Support] =>
[GIF Read Support] => 1
[GIF Create Support] => 1
[JPG Support] => 1
[PNG Support] => 1
[WBMP Support] => 1
[XPM Support] =>
[XBM Support] => 1
[J1S-mapped Japanese Font Support] =>

int imageTypes (void)

Returns a bit-field corresponding to the image formats supported by the version of GD linked into
PHP. The following bits are returned:

IMG_GIF | IMG_JPG | IMG_PNG | IMG_WBMP.

<?PHP
if (imagetypes() & IMG_GIF) echo "GIF Support is enabled
";

http://www.nyphp.org/content/presentati ons/GDintro/gd2.php[9/12/2009 6:29:07 PM]

http://www.nyphp.org/content/presentations/GDintro/gd1.php
http://www.php.net/manual/en/ref.image.php
http://www.boutell.com/gd/
http://www.onlamp.com/pub/au/1152
http://www.onlamp.com/pub/a/php/2003/03/27/php_gd.html
http://us3.php.net/gd_info
http://us4.php.net/imageTypes

RTFM & YMMV

it (imagetypes() & IMG_JPG) echo "JPEG Support is enabled
";
if (imagetypes() & IMG_PNG) echo "PNG Support is enabled
";
if (imagetypes() & IMG_WBMP) echo "WBMP Support is enabled
";
?>

GIF Support is enabled
JPEG Support is enabled

PNG Support is enabled
WBMP Support is enabled

Table of Contents EFunction Index

http://www.nyphp.org/content/presentations/GDintro/gd2.php[9/12/2009 6:29:07 PM]

http://www.nyphp.org/content/presentations/GDintro/gd1.php
http://www.nyphp.org/content/presentations/GDintro/gd1.php
http://www.nyphp.org/content/presentations/GDintro/gd0.php

Without GD

Without GD

The also include several functions that do not require
the GD libraries:

array getlmageSize (string filename [, array imagelnfo])

Will determine the size of any GIF, JPG, PNG, SWF, SWC, PSD, TIFF, BMP, IFF, JP2, JPX, JB2, JPC,
XBM, or WBMP image file, the dimensions, the file type (correspond to the IMAGETYPE constants), a
height/width text string to be used inside a normal HTML IMG tag, the number of bits per channel,
and the mime type.

The optional imagelnfo parameter allows you to extract some extended information from the image
file. Currently, this will return the different JPG APP markers as an associative array. Some programs
use these APP markers to embed text information in images, such as EXIE data in the APP1 marker
and IPTC information in the APP13 marker.

<?

PHP print_r (getlmageSize ('http://ww. nyphp.org/ing/new york php.gif")); ?
>

Array

(
[0] => 165
[1] => 145
[2] =>1
[3] => width="165" hei ght="145"
[bits] => 7
[channel s] => 3
[mine] => inmagel/gif

string image_type_to_mime_type (int imageType)
Returns the Mime-Type for an IMAGETYPE constant.

stands for Exchangeable Image File Format, and is a standard for
storing interchange information in image files such as those generated by
digital cameras. A set of EXIF functions are available if PHP has been
compiled with - -enabl e-exi f, they do not require the GD library. For more
information see Chapter 27: EXIF.

IPTC JPEG File Information is a standard by the

, iIn wide use by news agencies and professional
photographers. PHP can read and write this data. For more information see
Chapter 28: IPTC.

http://www.nyphp.org/content/presentati ons/GDintro/gd3.php[9/12/2009 6:29:09 PM]

http://www.php.net/manual/en/ref.image.php
http://us3.php.net/getImageSize
http://us2.php.net/image_type_to_mime_type
http://www.exif.org/
http://www.iptc.org/
http://www.iptc.org/

Without GD

You can also access the libraries using the system() function,

but that's another presentation.

Table of Contents EFunction Index

http://www.nyphp.org/content/presentations/GDintro/gd3.php[9/12/2009 6:29:09 PM]

http://www.imagemagick.com/
http://us2.php.net/system()
http://www.nyphp.org/content/presentations/GDintro/gd1.php
http://www.nyphp.org/content/presentations/GDintro/gd0.php

What About GIF?

What About GIF?

From the &

Update: | do expect to reintroduce GIF support after July 7th,
2004, however due to a family emergency this may not be
immediate. Thanks for your patience.

[author's note: I'll update this site as soon as support makes its way into
the bundled version, but since I'm not involved in any of those efforts, |
can't give a realistic estimate of when that might be.]

GD 2 creates PNG, JPEG and WBMP images, not GIF images. This is a
good thing. Please do not ask us to send you the old GIF version of gd.
Unisys holds a patent on the LZW compression algorithm, which is used in
fully compressed GIF images. The best solution is to move to legally
unencumbered, well-compressed, modern image formats such as PNG and
JPEG as soon as possible.

Many have asked whether GD will support creating GIF files again, since
we have passed June 20th, 2003, when the well-known Unisys LZW
patent expired in the US. Although this patent has expired in the United
States, this patent does not expire for another year in the rest of the
world. GIF creation will not reappear in GD until the patent expires
world-wide on July 7th, 2004.

Now...

The legal issue with GIF files is the LZW compression algorithm, not the
file structure itself. Toshio Kuratomi wrote libungif, a modified version Eric
S. Raymond's libgif GIF encoder that saves GIFs uncompressed, thus
completely avoiding any licensing issues. The obvious problem is that the
uncompressed GIF images will be larger than those encoded using the
LZW algorithm.

Table of Contents Eunction Index

http://www.nyphp.org/content/presentati ons/GDintro/gd4.php[9/12/2009 6:29:12 PM]

http://www.boutell.com/gd/manual2.0.15.html
http://www.boutell.com/gd/faq.html
http://prtr-13.ucsc.edu/%7ebadger/software/libungif.shtml
http://www.nyphp.org/content/presentations/GDintro/gd1.php
http://www.nyphp.org/content/presentations/GDintro/gd0.php

Color Theory

Color Theory

Some Definitions

Color Model: A method for producing a new color by mixing a small set
of standard primary colors.

Channels: another term for the primary colors used in a color model, e.g.
Red, Green and Blue in RGB. Interchangeable with the term component.

RGB: The file formats manipulated by the GD library all use the RGB color
model, which is an abstract representation of the way television and
computer monitors work. In the physical world, adjacent phosphor dots of
red, green and blue are stimulated to varying degrees to produce a wide
range of color. In the mathematical model, three channels of red, green
and blue grids of pixels are given values from zero to 100% that
correspond to the levels of red, green and blue light.

Bit-depth: the number of steps between zero and 100% in a color model
determined by the number of bits used to store the information. The most
common and familiar system uses 8 bits to store the value of each
channel, thus giving 256 possible values (from 0-255) for each pixel (just
for #!@%$s and giggles, these values are often still referred to by their
hexadecimal values of O-FF). In an 8-bit RGB color model, it takes 3
channels of 8 bits each to represent any color in the model, hence the
familiar six digit from HTML.

Table of Contents Eunction Index

http://www.nyphp.org/content/presentati ons/GDintro/gd5.php[9/12/2009 6:29:14 PM]

javascript:popup(colhwin,'ColorHex_Popup','colhpop.htm')
http://www.nyphp.org/content/presentations/GDintro/gd1.php
http://www.nyphp.org/content/presentations/GDintro/gd0.php

An Interactive Example

An Interactive Example

Additive Color System: a color system based on emitted light (as opposed to reflected).
Black is achieved when all channels are set to zero and no light is emitted. When all the
channels are on all the way, they combine to produce white (note this exactly the opposite
of the more familiar subtractive system of inks, pigments and Play-Doh®). A full spectrum
of colors are produced by varying the intensities of the various channels.

redraw

Table of Contents EFunction Index

http://www.nyphp.org/content/presentati ons/GDintro/gd6.php[9/12/2009 6:29:16 PM]

http://www.nyphp.org/content/presentations/GDintro/gd1.php
http://www.nyphp.org/content/presentations/GDintro/gd0.php

True Color Vs. Indexed Color

True Color Vs. Indexed Color

True Color

Color models with small bit-depths have gaps of missing colors that can't be
represented within their coarse data structure. Models that can represent a
large number of colors are known as "true color” or "continuous tone"
because they can display images without obvious gaps. The most common
true color model is 8-bit RGB, which can be used to represent 278 x 278 X
278, or 16,777,216, colors. When storing color information in a file, each
pixel is assigned a byte of color information for each channel, so a 150 x 150
pixel true color image would require 67,500 bytes or about 66k in color data
alone. Thus, uncompressed true color image file sizes tend to be quite large.

Specifying Color With Palettes

In order to reduce file sizes, an image with an index color palette uses a 1-
dimensional array of color values called a palette, also called a color map,
index map, color table, or look-up table (LUT). The color data in the file is
stored as a series of small index values which is known as indirect, or
pseudo-color storage. Instead of assigning a 3 byte value to each pixel, the
index of the color table is used instead. Thus, an 8 bit paletted color file will
be 1/3 the size of a true color file (although it can only display a limited 256
colors). Files can be made even smaller by chosing to use fewer colors than
256. Two colors would require only 1 bit per pixel, four 2/px, and eight 3/px,
as seen in the example below.

Pixel Value in File Palette (LUT)
2 3
B‘f 2' 11r 55; L] 255, 178, 0

Output Device

0, 155, 50

5
(0,0, 255)
178, 178, 255 |17%, 255, 178|255, 1786, 178| ———————
255, 255, O - 0, 255, 255 —
enlEn| S0, 150, 100)| 123 10 T

t-—-"l by an ine orm the Palette which
o be disp

True Color Example:

http://www.nyphp.org/content/presentations/GDintro/gd7.php[9/12/2009 6:29:20 PM]

True Color Vs. Indexed Color

B O O O B O O
P P O O O O B O
B P O kP O O kP
O O kB kB B P O Pk
B P O O O Rk kB B
O B O O F P O Bk
O B KB B O O kr Pk
P O KB B B P P O
N = T = = N = S SN S
P O KB kB O kB B O
O KB kB O O B LB O
N =T T e =
B P P O O O O Bk
B B O O kB B O O
O kB kB O Rk Rk Rk PR
O kB kB B O Fr Rk PR

Index Color Example:

000 =>00111112010
001 0110011010
010 0101010010
011 0110010000
100 1110111010

00000100001 0011010000100000

Which to Use?

The choice has a
dramatic impact
on file size and
image quality.
Click on the
image at right to
cycle through a
2x magnified
sample in true
color and indexed
to 256 and 32
colors. As a
general rule of
thumb, you'll
want to use true color for photorealistic images and index color for simple
graphics like charts & graphs.

rie co

Your choice of image file format also has an impact, since JPEG images are
always true color, but PNGs can be any one of fifteen color formats including
8 & 16 bit RGB (true color) as well as 1, 2, 4 and 8 bit palettes (indexed).

Image Supplied by FreeFoto.com

http://www.nyphp.org/content/presentations/GDintro/gd7.php[9/12/2009 6:29:20 PM]

True Color Vs. Indexed Color

Table of Contents Function Index

http://www.nyphp.org/content/presentations/GDintro/gd7.php[9/12/2009 6:29:20 PM]

http://www.nyphp.org/content/presentations/GDintro/gd1.php
http://www.nyphp.org/content/presentations/GDintro/gd0.php

The Basics

Let's Get to Some PHP Already!

Image creation in PHP is handled in 5 basic steps:

. Create a blank image of a specified size in memory.
. Add content to the blank image.
. Send the headers.
. Output the image in the chosen file format.
Delete the image from memory.

1. Create the Image:

resource imageCreate (int x_size, int y_size)

resource imageCreateTrueColor (int x_size, inty_size)

Returns an image identifier representing a blank image of size x_size by y_size.

Image creation is done with one of two functions i negeCreate() and

i mageCreat eTrueCol or () . The latter creates a true color image and the
former creates an index color image. Both functions return an integer
image identifier and require 2 parameters representing the width and

height of the image in pixels. The PHP online manual recommends the
use of i mageCreat eTrueCol or (), but if you understand its limitations,

i mageCreat e() can often be a more appropriate choice.

2. Add content:

Once you have a blank image in memory, there are many copy,
transform, draw, and text/font functions to create your masterpiece.
These will be covered later in the presentation.

3. Send the Headers:

int header (string string [, bool replace [, int http_response_code]])
Used to send raw HTTP headers. See the HTTP/1.1 specification for more information.

Since you're going to be sending image data to the browser instead of
HTML, you need to use the header function to send the appropriate

http://www.nyphp.org/content/presentati ons/GDintro/gd8.php[9/12/2009 6:29:23 PM]

http://us4.php.net/imageCreate
http://us2.php.net/imageCreateTrueColor
http://us3.php.net/imageCreate()
http://us3.php.net/imageCreateTrueColor()
http://us3.php.net/imageCreateTrueColor()
http://us3.php.net/imageCreate()
http://us2.php.net/header
http://www.w3.org/Protocols/rfc2616/rfc2616

content type: image/png, image/jpeg, etc.

4. Output the Image

int imagePNG (resource image [, string filename])
Outputs a GD image stream (image) in PNG format to standard output (usually the browser) or,
if a filename is given by the filename it outputs the image to the file.

int imageJPEG (resource image [, string filename [, int quality]])

Creates the JPEG file in filename from the image image. The filename argument is optional, and if
left off, the raw image stream will be output directly. quality is optional, and ranges from O (worst
quality, smaller file) to 100 (best quality, biggest file). The default is the default 1JG quality value
(about 75).

int imageWBMP (resource image [, string filename [, int foreground]])

int imageGIF (resource image [, string filename])

int imageGD (resource image [, string filename])

int imageGD2 (resource image [, string filename [, int chunk_size [, int type]]])

In PHP you manipulate images within memory in GD's native format. The
functions listed above are for outputting your image in whatever format
you need to use. Like true color vs. indexed, what format you choose will
depend upon the particular situation. In general JPEGs are good for true
color, photographic images and PNGs are good for indexed color graphics.
WBMP, the Wireless Bitmap format, is used for two-color images for WML
pages. GIF is similar to PNG, but inferior in every way and has patent
trouble, so is best avoided. The GD & GD2 formats are, according to the

"not intended for general purpose use and should never be

used to distribute images. It is not a compressed format. Its purpose is
solely to allow very fast loading of images your program needs often in
order to build other images for output.”

5. Delete the Image

int imageDestroy (resource image)

Frees any memory associated with image image. image is the image identifier returned by the
imageCreate() function.

Whether you output the image to a browser, save it to a file, or just give
up it will remain in the server's memory until it is destroyed. If you
continue to build images without destroying them, the server will crash.
Never create an image without destroying it by the end of your script.

http://www.nyphp.org/content/presentations/GDintro/gd8.php[9/12/2009 6:29:23 PM]

http://us4.php.net/imagePNG
http://us3.php.net/imageJPEG
http://us2.php.net/imageWBMP
http://us2.php.net/imageGIF
http://us4.php.net/imageGD
http://us4.php.net/imageGD2
http://www.boutell.com/gd/manual2.0.15.html#gdformat
http://us3.php.net/imageDestroy
http://us2.php.net/imageCreate()

The Basics

http://www.nyphp.org/content/presentations/GDintro/gd8.php[9/12/2009 6:29:23 PM]

http://www.nyphp.org/content/presentations/GDintro/gd1.php
http://www.nyphp.org/content/presentations/GDintro/gd0.php

A Simple Example

A Simple Example

simplepng.php

As a first example, consider the PHP file used in the previous True Color/Index
Color examples and below. The file is called with a single parameter: the six digit
hexadecimal representation of an RGB color, and returns a 50 x 50 pixel PNG set
to that color.

int imageColorAllocate (resource image, int red, int green, int blue)

Returns a color identifier representing the color composed of the given RGB components. The im argument
is the return from the imageCreate() function. red, green and blue are the values of the red, green and
blue component of the requested color respectively. These parameters are integers between 0 and 255 or
hexadecimals between 0x00 and OxFF. imageColorAllocate() must be called to create each color that is to
be used in the image represented by image.

In the event that all 256 colors have already been allocated, imageColorAllocate() will return -1 to
indicate failure.

error_reporting(E_ALL ~ E_NOTI CE);

$i mCol or = hex2int (val i dHexCol or ($_REQUEST[' color']));

$i m = i mageCr eat e(50, 50) ;

$background = inageCol orAllocate($im S$inmColor['r'], $inmColor['g'], SinmColor['b']);
header (' Content -type: inage/png');

i magePNG($i m) ;

i mgeDest roy($i m ;

http://www.nyphp.org/content/presentati ons/GDintro/gd9.php[9/12/2009 6:29:25 PM]

http://us4.php.net/imageColorAllocate
http://us2.php.net/imageCreate()
http://us3.php.net/imageColorAllocate()
http://us2.php.net/imageColorAllocate()

A Simple Example

function hex2int ($hex) {
return array('r' => hexdec(substr($hex, 0, 2)),

'g'" => hexdec(substr($hex, 2, 2)),
"b' => hexdec(substr($hex, 4, 2))

function val i dHexCol or ($i nput = ' 000000', $default = '000000") {

return (eregi (‘~[0-9a-f]{6}$', $Sinput)) ? $input : S$default

It is a good practice to keep steps 3, 4, and 5 together. If you don't wait until
the last possible moment to send the headers, any errors thrown by the code will
be interpreted as binary gobbeldygook and you won't see them. It also helps to
maintain the important habbit of destorying images by doing it immediately after

you output or save them.

Table of Contents Function Index

http://www.nyphp.org/content/presentati ons/GDintro/gd9.php[9/12/2009 6:29:25 PM]

http://www.nyphp.org/content/presentations/GDintro/gd1.php
http://www.nyphp.org/content/presentations/GDintro/gd0.php

The Draw Functions

The Draw Functions

In order to make a more interesting image you'll use the drawing functions to make lines and shapes. For all functions, the
top left is 0,0.

int imageSetPixel (resource image, int x, int y, int color)
Draws a pixel at x, y in image image of color color.

($im, |$x | |$y | [solack) ;

redraw

int imagelLine (resource image, int x1, int y1, int x2, int y2, int color)
Draws a line from x1, y1 to x2, y2 in image im of color color.

[imagetine | ($im, | $x1 |, [svr |, |[$x2 |, [$v2 |, [somck]);

redraw

int imageRectangle (resource image, int x1, int y1, int x2, int y2, int col)
int imageFilledRectangle (resource image, int x1, int y1, int X2, int y2, int color)
Creates a rectangle of color col in image image starting at upper left coordinate x1, y1 and ending at bottom right coordinate x2, y2.

IimageRectangIe | ($im |$X1 | |$y1 |, |$X2 |, |$y2 |, |$black |) ;

redraw

int imagePolygon (resource image, array points, int num_points, int color)

int imageFilledPolygon (resource image, array points, int num_points, int color)

Creates a polygon in image image. points is a PHP array containing the polygon's vertices, ie. points[0] = x0, points[1] = yO0, points[2] = x1, points[3] = y1, etc.
num_points is the total number of points (vertices).

13, 61, 60, 61, 75, 16, 90, 61, 137, 61, 99, 89, 113, 134, 75, 106, 37, 134, 51, 89
$points = array ();

[imagePolygon | ($im, $points, (count($points)/2) ,) ;

redraw

int imageEllipse (resource image, int cx, int cy, int w, int h, int color)

int imageFilledEllipse (resource image, int cx, int cy, int w, int h, int color)

Draws an ellipse centered at cx, cy in the image represented by image. W and h specifies the ellipse's width and height respectively. The color of the ellipse is
specified by color.

imageEllipse I ($im, |CX |, |cy |, |W |, | h |, |$b|ack |) ;

redraw

int imageArc (resource image, int cx, int cy, int w, int h, int s, int e, int color)

int imageFilledArc (resource image, int cx, int cy, int w, int h, int s, int e, int color, int style)

Draws a partial ellipse centered at cx, cy in the image represented by image. W and h specifies the ellipse's width and height respectively while the start and end
points are specified in degrees indicated by the s and e arguments. 0° is located at the three-o'clock position, and the arc is drawn counter-clockwise. style is a

http://www.nyphp.org/content/presentations/GDintro/gd10.php[9/12/2009 6:29:28 PM]

http://us3.php.net/imageSetPixel
http://us2.php.net/imageLine
http://us3.php.net/imageRectangle
http://us4.php.net/imageFilledRectangle
http://us2.php.net/imagePolygon
http://us4.php.net/imageFilledPolygon
http://us4.php.net/imageEllipse
http://us2.php.net/imageFilledEllipse
http://us2.php.net/imageArc
http://us4.php.net/imageFilledArc

The Draw Functions

bitwise OR of the following possibilities: IMG_ARC_CHORD just connects the starting and ending angles with a straight line, while IMG_ARC_PIE produces a
rounded edge. IMG_ARC_NOFILL indicates that the arc or chord should be outlined, not filled. IMG_ARC_EDGED, used together with IMG_ARC_NOFILL,
indicates that the beginning and ending angles should be connected to the center - this is a good way to outline (rather than fill) a 'pie slice’.

IMG_ARC_PIE
IMG_ARC_CHORD

[imagenre | sim, [sox . [soy | [sw 1. [sn] [ss] [se], [smeac], [IMG_ARC_EDGED | ;

redraw

int imageFill (resource image, int X, int y, int color)
Performs a flood fill starting at coordinate x, y with color color in the image image.

($im,|$x |,|$y |,|$b|ack |);

redraw

int imageFillToBorder (resource image, int x, int y, int border, int color)
Performs a flood fill of color color to the border color defined by border starting at coordinate x, y with color color.

—
|imageFiIIToBorder | ($im, |$X |, |$Y |, |$orange |, |$b|ack |) ;

redraw

Table of Contents Eunction Index

http://www.nyphp.org/content/presentations/GDintro/gd10.php[9/12/2009 6:29:28 PM]

http://us2.php.net/imageFill
http://us4.php.net/imageFillToBorder
http://www.nyphp.org/content/presentations/GDintro/gd1.php
http://www.nyphp.org/content/presentations/GDintro/gd0.php

Clock Example

Clock Example

Drawing a Clock

An example of the type of image that you might want to r 1
generate dynamically is a clock. If the image at right were

not generated dynamically, this page would require 43,200

different versions of the image to show any and all times. L J
The steps to create the image are fairly simple. First, we set the image's
background color to white with i nageCol or Al | ocat e() and save that color’s
resource id in a variable for later use. The first time we call

i mageCol or Al | ocat e() , the background color of the image will be set to the
defined color (only with i mrageCreat e(), not i nageCreat eTrueCol or ()).
Subsequent calls to i mageCol or Al | ocat e() will only define a color within
the color index, but not add it anywhere within the image itself. Next we'll
need to define the brown and the black colors to be used in the image.
With the colors defined, using i mageFi | | edEl | i pse() we'll draw three

progressively smaller ellipses: black, brown and then white that will define
the face.

We could use i nageFi | | edRect angl e() in conjunction with some
trigonometry to draw the hands, but it is easier to let the math take care
of itself with i mageFi | | edArc() . For that to work all we need to know is the
angle, which is found by converting the time (0-11 hours, 0-59 minutes &
0-59 seconds) to degrees and shifting 90 degrees because for some
godawful reason, GD uses 3 o'clock as its O.

$im = i nageCreate(101, 101);

$white i mgeCol or Al |l ocate ($im OxFF, OxFF, OxFF);
$ot her | mageCol or Al | ocate ($im O0x8B, 0x45, 0x13);
$bl ack i mageCol or Al | ocate ($im 0x00, 0x00, 0x00);

http://www.nyphp.org/content/presentations/GDintro/gd11.php[9/12/2009 6:29:32 PM]

javascript:popClock();
http://us4.php.net/imageColorAllocate()
http://us4.php.net/imageColorAllocate()
http://us3.php.net/imageCreate()
http://us2.php.net/imageCreateTrueColor()
http://us3.php.net/imageColorAllocate()
http://us4.php.net/imageFilledEllipse()
http://us2.php.net/imageFilledRectangle()
http://us3.php.net/imageFilledArc()

Clock Example

i mageFi | | edEl | i pse ($im 50, 50, 100, 100, $bl ack);
i mageFi |l | edEl | i pse ($im 50, 50, 90, 90, %$other);
i mageFi |l | edEl | i pse ($im 50, 50, 75, 75, $white);

$hd = i ngDegr eesFronii me(' hour') ;
$nd i ngDegr eesFronili ne(' m nute') ;
$sd i mgDegr eesFronTi me(' second') ;

i mgeFi |l edArc ($im 50, 50, 52, 52, $hd-6, $hd+6, $other, | MG ARC PIE);
i mgeFi |l edArc ($im 50, 50, 65, 65, $nd-3, $nd+2, $other, | MG ARC PIE);
i mgeFi |l edArc ($im 50, 50, 70, 70, $sd-2, $sd+1, $black, | M5 ARC PIE);

i mageFi | | edEl | i pse ($im 50, 50, 5, 5, $other);

header ('Refresh: 1; URL='".$_SERVER[' PHP_SELF']);
header (' Content -type: i nmage/png');

i magePNG ($i m) ;

i mageDestroy ($im;

function ingDegreesFronili me($kind) {
switch ($kind) {
case ' hour'
return ((date('g') * 30) + 270) % 360 ;
case 'm nute’
return ((date('i') * 6) + 270) % 360 ;
case 'second’
return ((date('s') * 6) + 270) % 360 ;

~ontents Function Index

http://www.nyphp.org/content/presentations/GDintro/gd11.php[9/12/2009 6:29:32 PM]

http://www.nyphp.org/content/presentations/GDintro/gd1.php
http://www.nyphp.org/content/presentations/GDintro/gd0.php

Simple Transparency

Simple Transparency

Improving the Clock

The clock would look a lot better if we got rid of the white
box around it, leaving just the circle. This is accomplished by
setting one of our indexed colors the special color
"transparent”. Any pixels in the image colored with this index
will appear transparent in the final image, allowing the
background to show through.

int imageColorTransparent (resource image [, int color])

Sets the transparent color in the image image to color. image is the image identifier returned by
imageCreate() and color is a color identifier returned by imageColorAllocate(). The identifier of
the new (or current, if none is specified) transparent color is returned.

<?PHP

$im = i nageCreate(101, 101);

$backgr ound i mgeCol or Al | ocate ($im 0, 0, 0);
$backgr ound i mageCol or Transpar ent ($i m $backgr ound) ;

$nyphpPur p i mgeCol or Al | ocate ($im O0x70, Ox6D, 0x85);
$nyphpBl ue i mgeCol or Al | ocate ($im Ox1A, Ox1A, 0x73);
$nyphpG ey i mageCol or Al l ocate ($im OxDD, 0xDD, O0OxDD);

i mgeFi |l edEl i pse ($im 50, 50, 100, 100, $nyphpBlue);
i mgeFi |l edEl i pse ($im 50, 50, 90, 90, $nyphpPurp);
i mgeFill edEl i pse ($im 50, 50, 75, 75, $nyphpGey);

$hd i mgDegr eesFronTi me(' hour ")
$md i nrgDegr eesFronti me("' m nut e’
$sd i mgDegr eesFronTi me(' second’

i mgeFi ||l edArc ($im 50, 50, 52, $hd- 6, $hd+6, $nyphpPurp, | M5 ARC PIE);
i mgeFi |l edArc ($im 50, 50, 65, $nd- 3, $md+2, $nyphpPurp, | M5 ARC PIE);
i mgeFi |l edArc ($im 50, 50, 70, $sd-2, $sd+1, $nyphpBlue, | M5 ARC PIE);

http://www.nyphp.org/content/presentations/GDintro/gd12.php[9/12/2009 6:29:34 PM]

javascript:popClock();
http://us3.php.net/imageColorTransparent
http://us2.php.net/imageCreate()
http://us2.php.net/imageColorAllocate()

Simple Transparency

i mgeFi |l edEl | ipse ($im 50, 50, 5, 5, $nyphpPurp);

header ('Refresh: 1; URL='".$_ SERVER[' PHP_SELF'])
header (' Content -type: i mge/png');

i magePNG ($i m ;

i mageDestroy ($im;

function ingDegreesFronii ne($kind) {
switch ($kind) {
case ' hour'
return ((date('g') * 30) + 270)
case 'mnute’
return ((date('i') * 6) + 270)
case 'second’
return ((date('s') * 6) + 270)

Table of Contents Eunction Index

http://www.nyphp.org/content/presentations/GDintro/gd12.php[9/12/2009 6:29:34 PM]

http://www.nyphp.org/content/presentations/GDintro/gd1.php
http://www.nyphp.org/content/presentations/GDintro/gd0.php

Using Existing Images

Using Existing Images

As you can see, creating images from scratch can be very tedious. It is often best to
modify an existing image if you want anything but the simplest graphics. In addition to
i mageCreat e() there are many i mageCr eat eFrom... functions. The only thing
differentiating most of them is the particular graphics file format they read.

int imageCreateFromPNG (string filename)
int imageCreateFromJPEG (string filename)
int imageCreateFromWBMP (string filename)
int imageCreateFromGIF (string filename)
int imageCreateFromGD (string filename)

int imageCreateFromGD2 (string filename)
int imageCreateFromXBM (string filename)
int imageCreateFromXPM (string filename)

Returns an image identifier representing the image obtained from the given filename or URL.

int imageCreateFromsString (string image)

Returns an image identifier representing the image obtained from the given string.

int imageCreateFromGD2Part (string filename, int srcX, int srcY, int width, int height)

Create a new image from a given part of GD2 file or URL.

<?PHP

session_start ();

switch ($ _SESSION['png']) {
case 'treel.png':

$ SESSION['png'] = 'tree2.png'
br eak;

case 'tree2.png':
$ SESSION['png'] = 'tree3.png' ;
br eak;

def aul t:
$ SESSION['png'] = 'treel.png ;
br eak;

$i m = i nageCr eat eFr omPNG($_SESSI ON[' png']) ;
header (' Content -type: inage/png');

http://www.nyphp.org/content/presentati ons/GDintro/gd13.php[9/12/2009 6:29:40 PM]

http://us2.php.net/imageCreate()
http://us3.php.net/imageCreateFrom
http://us2.php.net/imageCreateFromPNG
http://us4.php.net/imageCreateFromJPEG
http://us3.php.net/imageCreateFromWBMP
http://us3.php.net/imageCreateFromGIF
http://us4.php.net/imageCreateFromGD
http://us4.php.net/imageCreateFromGD2
http://us2.php.net/imageCreateFromXBM
http://us4.php.net/imageCreateFromXPM
http://us2.php.net/imageCreateFromString
http://us3.php.net/imageCreateFromGD2Part

Using Existing Images

i magePNG($i m) ;
i mgeDestroy($i m ;
?>

Image Supplied by FreeFoto.com

http://www.nyphp.org/content/presentati ons/GDintro/gd13.php[9/12/2009 6:29:40 PM]

http://www.nyphp.org/content/presentations/GDintro/gd1.php
http://www.nyphp.org/content/presentations/GDintro/gd0.php

Styles, Tiles & Brushes

Styles, Tiles & Brushes

You aren't limited to drawing shapes with a single pixel line, or filling areas with one flat color; the GD library
provides several functions that can alter the default behavior of the drawing and filling functions.

void imageSetThickness (resource image, int thickness)

Sets the thickness of the lines drawn when drawing rectangles, polygons, ellipses etc. etc. to thickness pixels.

@m, 1) ;

{25,200
redraw

Unlike the following functions that are only applied in conjunction with the use of special color constants,
i mageSet Thi ckness()

is a global property and effects every drawing function after it is called.
int imageSetStyle (resource image, array style)

Sets the style to be used by all line drawing functions when drawing with the special color IMG_COLOR_STYLED. The style parameter is an array of pixels.

$style = array ([swh |,[$wh

|,|$wh |,|$wh |,|$wh |,|$wh |,|$wh |,|$wh

|,|$wh |,|$wh |)
imageSetStyle($im, $style) ;

| imageLine($im,$x1,$y1,$x2,$y2,IMG_COLOR_STYLED)

redraw

The next two functions load existing images and use them to create styles. These are the original images provided
as options in the examples:

checkerboard red dot rainbow NYPHP

int imageSetTile (resource image, resource tile)

Sets the tile image to be used by all region filling functions when filling with the special color IMG_COLOR_TILED. A tile is an image used to fill an area
with a repeated pattern. Any GD image can be used as a tile.

i mgeSet Til e ($im,)

| imageLine($im,$x1,$y1,$x2,$y2,IMG_COLOR_TILED)

redraw

int imageSetBrush (resource image, resource brush)

Sets the brush image to be used by all line drawing functions when drawing with the special colors IMG_COLOR_BRUSHED or
IMG_COLOR_STYLEDBRUSHED.

i mageSet Brush ($im,) ;

[imageLine($im $x1,8y1,$x2,$y2,MG_COLOR_STYLED)

redraw

http://www.nyphp.org/content/presentati ons/GDintro/gd14.php[9/12/2009 6:29:43 PM]

http://us2.php.net/imageSetThickness
http://us4.php.net/imageSetThickness()
http://us4.php.net/imageSetStyle
http://us4.php.net/imageSetTile
http://us4.php.net/imageSetTile
http://us2.php.net/imageSetBrush
http://us3.php.net/imageSetBrush

Styles, Tiles & Brushes

Function Inde:

http://www.nyphp.org/content/presentati ons/GDintro/gd14.php[9/12/2009 6:29:43 PM]

http://www.nyphp.org/content/presentations/GDintro/gd1.php
http://www.nyphp.org/content/presentations/GDintro/gd0.php

The Color Functions

The Color Functions

In addition to drawing objects on an existing image, the PHP image functions
can also perform transformations on its colors. The main advantage of using
index color images with the PHP image functions is that you can globally
manipulate colors and color ranges in a predictable manner by altering the
index table. This isn't always the case with true color images.

bool imageColorSet (resource image, int index, int red, int green, int blue)

Sets the specified index in the palette to the specified color. This is useful for creating flood-fill-like
effects in paletted images without the overhead of performing the actual flood-fill.

This function basically reassigns the color value of an index in the table. Any
pixel in the image set to that index will now display the new color.

Php)

imageColorSet

There are several functions provided to determine the index of a color within
an image by position or color:

int imageColorAt (resource image, int X, int y)
Returns the index of the color of the pixel at the specified location in the image specified by image.

int imageColorClosest (resource image, int red, int green, int blue)

Returns the index of the color in the palette of the image which is "closest" to the specified RGB value.
The "distance" between the desired color and each color in the palette is calculated as if the RGB
values represented points in three-dimensional space.

int imageColorClosestHWB (resource image, int x, int y, int color)
Returns the index of the color which has the hue, white and blackness nearest to the given color.

int imageColorExact (resource image, int red, int green, int blue)
Returns the index of the specified color in the palette of the image. If the color does not exist in the

image's palette, -1 is returned.

int imageColorResolve (resource image, int red, int green, int blue)
This function is guaranteed to return a color index for a requested color, either the exact color or the

closest possible alternative.

Note that the colors in an image you might think are ‘exact’ and ‘closest’
aren't always the ones that these functions are going to pick. Using these
functions with your images may require some trial and erorr.

http://www.nyphp.org/content/presentations/GDintro/gd15.php[9/12/2009 6:29:46 PM]

http://us2.php.net/imageColorSet
http://us2.php.net/imageColorAt
http://us4.php.net/imageColorClosest
http://us2.php.net/imageColorClosestHWB
http://us3.php.net/imageColorExact
http://us2.php.net/imageColorResolve

The Color Functions

error_reporting(E_ALL ~ E_NOTICE);

$phpHex = ' 5B69A6' ;
$phpCol or = hex2i nt ($phpHex) ;

$newCol or = hex2int (val i dHexCol or ($_REQUEST[' col or'], $phpHex)) ;

$i m = i nageCr eat eFr onPNG(' php. png') ;
$phpCl ndex = i mageCol or Exact ($i m $phpColor['r'], $phpColor['g'], $phpColor['b']);
i mageCol or Set ($i m $phpCl ndex, $newCol or['r'], $newCol or[' g'], $newCol or[' b']);

header (' Content -type: i nmage/png');
i magePNG($i m) ;
i mageDestroy($i m;

function hex2int ($hex) {
return array('r' => hexdec(substr($hex, 0, 2)),
'g'" => hexdec(substr($hex, 2, 2)),
"b' => hexdec(substr($hex, 4, 2))
);

}

function val i dHexCol or ($i nput = ' 000000', $default = '000000') {
return (eregi (‘~[0-9a-f]{6}$', $input)) ? $input : $default ;

}

?>

A few more useful color functions:

int imageColorsTotal (resource image)
Returns the number of colors in the specified image's palette.

int imageColorDeallocate (resource image, int color)
This function de-allocates a color.

http://www.nyphp.org/content/presentati ons/GDintro/gd15.php[9/12/2009 6:29:46 PM]

http://us3.php.net/imageColorsTotal
http://us3.php.net/imageColorDeallocate

The Color Functions

array imageColorsForlndex (resource image, int index)
This returns an associative array with red, green, blue and alpha keys that contain the appropriate
values for the specified color index.

void imageTrueColorToPalette (resource image, bool dither, int ncolors)

Converts a truecolor image to a palette image. If dither is TRUE then dithering will be used which will
result in a more speckled image but with better color approximation. ncolors sets the maximum
number of colors that should be retained in the palette. It is usually best to simply produce a truecolor
output image instead.

int imageGammacCorrect (resource image, float inputgamma, float outputgamma)
Applies gamma correction to a GD image stream (image) given an input gamma, inputgamma and an
output gamma, outputgamma.

Gamma correction is the ability to correct for differences in how computer
systems interpret color values. Macintosh-generated images tend to look too
dark on PCs, and PC-generated images tend to look too light on Macs.

Table of Contents EFunction Index

http://www.nyphp.org/content/presentati ons/GDintro/gd15.php[9/12/2009 6:29:46 PM]

http://us2.php.net/imageColorsForIndex
http://us4.php.net/imageTrueColorToPalette
http://us4.php.net/imageGammaCorrect
http://www.nyphp.org/content/presentations/GDintro/gd1.php
http://www.nyphp.org/content/presentations/GDintro/gd0.php

The Interactive Example Source

The Interactive Example Source

<?PHP

error_reporting(E_ALL ~ E_NOTI CE);

if (isset($_REQUEST[' hex'])) {

$i nCol or = hex2int (val i dHexCol or ($_REQUEST[' hex']))

} else {
$inColor['r'] = validlintColor($ REQUEST['red']);
$inColor['g'] = validlntCol or ($_REQUEST[' green']);
$inColor['b'] = validlntColor($ REQUEST['blue']);
}

$i m = i mageCreat eFr onPNG(' r gb. png')

$rlndex = inmageCol or Exact ($im OxFF, 0x00, 0x00);
$gl ndex = i nmageCol or Exact ($im 0x00, OxFF, 0x00);
$bl ndex = imageCol or Exact ($im 0x00, 0x00, OxFF);
$W ndex = imageCol or Exact ($im OxFF, OxFF, OxFF);

http://www.nyphp.org/content/presentati ons/GDintro/gd16.php[9/12/2009 6:29:48 PM]

The Interactive Example Source

i mageCol orSet ($im $rindex, $SinmColor['r"], 0, 0);
i mgeCol or Set ($im $glndex, 0, $inColor['g'], 0);
i mgeCol or Set ($i m $blndex, 0, 0, $inmColor['b'])

i mgeCol orSet ($im $w ndex, $inColor['r'], $inColor['g'], $inColor['b']);
header (' Content -type: inage/png');

i mgePNG($i m) ;
i mageDest roy($i m ;

function hex2int ($hex) {
return array('r' => hexdec(substr($hex, 0, 2))
'g" => hexdec(substr($hex, 2, 2)),
"b' => hexdec(substr($hex, 4, 2))
)
}
function validHexCol or ($i nput = '000000', $default = '000000") {
return (eregi (‘~[0-9a-f]{6}$', $input)) ? $input : $default ;

}

function validlntColor($input, $default = 0) {

return (is_numeric($input)) ? (int) max(mn($input, 255),0) : (int) $default ;

?>

Table of Contents EFunction Index

http://www.nyphp.org/content/presentati ons/GDintro/gd16.php[9/12/2009 6:29:48 PM]

http://www.nyphp.org/content/presentations/GDintro/gd1.php
http://www.nyphp.org/content/presentations/GDintro/gd0.php

Map Example

Map Example

In the example below, the original image is an indexed file with each state
colored by a different value from the palette. By converting the relative
"sales data" of each state to a color value, we can use i nageCol or Set () to

display this information graphically. The darker the blue, the more sales in
that state.

requi re(' sal esdata. php');

$i m = i mageCreat ef ronpng(' usa. png') ;
$statelndex = array ('AL' 16, 'AR

' CO 52,

FL' 11,

I L' 13,

LA 22,

M’ 12,

56,

32,

19,

http://www.nyphp.org/content/presentations/GDintro/gd17.php[9/12/2009 6:29:50 PM]

http://us4.php.net/imageColorSet()

Map Example

'"PA => 20, 'RI' => 39,
"IN => 24, 'TX => 58,
VI => 31, 'WA = 6,
"W => 50);

$normal i zed = gradi ent FronRange($st at es) ;

foreach ($normalized as $state => $color) ({
i mgeCol or set ($i m $st at el ndex[$st at e], $col or, $col or, 255) ;

}

header (' Content -type: inmage/png');
i mgePng($i m ;
i mageDest roy($i m ;

function gradi ent FronmRange($usa) {

$l owest = min($usa);
$ratio = 255 / (max(%usa) - $lowest) ;
foreach ($usa as $state => $sales) {

$gradi ent [$state] = 255 - round(($sales - $lowest) * $ratio)
}

return $gradient ;

Note that in the original image to the
right, even though each state is
colored with a different index, all the
indexes refer to the value of white.

Table of Contents Eunction Index

http://www.nyphp.org/content/presentations/GDintro/gd17.php[9/12/2009 6:29:50 PM]

http://www.nyphp.org/content/presentations/GDintro/gd1.php
http://www.nyphp.org/content/presentations/GDintro/gd0.php

Drop Shadow Example

Drop Shadow Example

A practical use of the image functions is to generate a series of permutations
from a single set of images. You could, for instance, design all the basic
elements of a website in grayscale and use PHP to colorize them to match
different color schemes for various subsections or based upon user preferences.
The code below demonstrates an example of how to alter the foreground,
background and shadow colors of such an image.

Foreground: |000000

Background: |FFFFFF

Shadow:

redraw

error_reporting(E _ALL ~ E_NOTI CE);

$f oreground = hex2int (val i dHexCol or ($_REQUEST[' f oreground'], "' 000000'));
$background = hex2int (val i dHexCol or ($_REQUEST[' background'], "' FFFFFF'));
if (isset($ REQUEST['shadow])) {

$shadow = hex2i nt (val i dHexCol or ($_REQUEST][' shadow |, ' 666666"'));
} else {

$shadow = tint O ($f oreground, 0. 6)
}

$i m = i mageCreat eFr onPNG(' gr adi ent. png') ;

$bl ack i mageCol or Resol ve($i m 0x00, 0x00, 0x00)
$white i mageCol or Resol ve($i m O0xFF, OxFF, OxFF)

$col or Steps = i mageCol orsTot al ($i m

http://www.nyphp.org/content/presentati ons/GDintro/gd18.php[9/12/2009 6:29:53 PM]

Drop Shadow Example

$step['r'] = ($shadow'r'] - $background['r']) / S$col orSteps ;
$step['g'] = ($shadow'g'] - $background['g']) / S$col orSteps ;
$step['b'] = ($shadowf'b'] - $background['b']) / S$col orSteps ;
for ($n=%$white; $n<$bl ack; ++$n)

i mageCol or Set ($i m $n,
round(($n * $step[’
round(($n * $step[’
round(($n * $step[’
)

i mageCol or Set ($i m $bl ack, $f oreground[' r'
header (" Cont ent -t ype:

i mgePNG($i m) ;
i rageDest roy($i m ;

i mage/ png") ;

function hex2int ($hex) {
return array(

"r' => hexdec(substr ($hex,
'g' => hexdec(substr ($hex,
"b' => hexdec(substr ($hex,

function val i dHexCol or ($i nput = ' 000000

return (eregi ('*[0-9a-f]{6}$%$',

function tintO ($col or,
return array ('r’

$tint) {

"b' => round(((255-%color|

?>

$input)) ? $input

=> round(((255-%color['r']) * (
'g'" => round(((255-%$color['g']) * (
"br]) *(

r']) + $background['r']),
g']) + $background['g']),
b']) + $background['b'])

], $foreground['g'], $foreground['b']);

0, 2)),
2, 2)),
4, 2))
, $default = '000000') {

$def aul t

1-$tint)) + $color['r'
1-$tint)) + $color['qg'
1-$tint)) + $color['b

]
]

http://www.nyphp.org/content/presentati ons/GDintro/gd18.php[9/12/2009 6:29:53 PM]

),
1),
)

)

Drop Shadow Example

Table of Contents Function Index

http://www.nyphp.org/content/presentations/GDintro/gd18.php[9/12/2009 6:29:53 PM]

http://www.nyphp.org/content/presentations/GDintro/gd1.php
http://www.nyphp.org/content/presentations/GDintro/gd0.php

Copying, Resizing and Rotating functions

Copying, Resizing And Rotating Functions

Transformations on an image like resizing and rotating are achieved indirectly by applying the transformation while copying
a source image to a destination.

int imageCopy (resource dst_im, resource src_im, int dst_x, int dst_y, int src_x, int src_y, int src_w, int src_h)
Copies a part of src_im onto dst_im starting at the X, y coordinates src_x, src_y with a width of src_w and a height of src_h. The portion defined will be copied
onto the x, y coordinates, dst_x and dst_y.

i mageCopy (| white [[lpg |, [white [[lpa |, |$dx |, |$dy |, |$sx |, |$sy |, |$sw |, |$sh |) ;

redraw

int imageCopyMerge (resource dst_im, resource src_im, int dst_x, int dst_y, int src_x, int src_y, int src_w, int src_h, int pct)
Copies a part of src_im onto dst_im starting at the x, y coordinates src_x, src_y with a width of src_w and a height of src_h. The portion defined will be copied
onto the x, y coordinates, dst_x and dst_y. The two images will be merged according to pct which can range from 0 to 100. When pct = 0, no action is taken,
when 100 this function behaves identically to imageCopy().

i mgeCopyMer ge (| white [[dpg |, [(white |lipg |, |$dx | |$dy | |$sx | |$sy | |$sw | |$sh | |$pct |) ;

redraw

int imageCopyMergeGray (resource dst_im, resource src_im, int dst_x, int dst_y, int src_x, int src_y, int src_w, int src_h, int pct)
Copies a part of src_im onto dst_im starting at the x, y coordinates src_x, src_y with a width of src_w and a height of src_h. The portion defined will be copied
onto the X, y coordinates, dst_x and dst_y. The two images will be merged according to pct which can range from 0 to 100. When pct = 0, no action is taken,
when 100 this function behaves identically to imageCopy(). This function is identical to imageCopyMerge() except that when merging it preserves the hue of
the source by converting the destination pixels to gray scale before the copy operation.

i mgeCopyMer geGray ([white |[apa |, [whie [[ee |, [$dx | [sdy |, [$sx [, [ssy |, [$sw |, [$sh |, [spct |) ;

redraw

int imageCopyResized (resource dst_im, resource src_im, int dstX, int dstY, int srcX, int srcY, int dstW, int dstH, int srcW, int srcH)
Copies a rectangular portion of one image to another image. dst_im is the destination image, src_im is the source image identifier. If the source and destination
coordinates and width and heights differ, appropriate stretching or shrinking of the image fragment will be performed. The coordinates refer to the upper left
corner. This function can be used to copy regions within the same image (if dst_im is the same as src_im) but if the regions overlap the results will be
unpredictable.

i mageCopyResi zed ([white e], [white [[es |, [$dx |, [sdy |, [$sx |, [ssy | [saw [, [$dnh |, [$sw |, [$sh |) ;

redraw

http://www.nyphp.org/content/presentations/GDintro/gd19.php[9/12/2009 6:29:55 PM]

http://us4.php.net/imageCopy
http://us2.php.net/imageCopy
http://us2.php.net/imageCopyMerge
http://us2.php.net/imageCopy()
http://us3.php.net/imageCopyMerge
http://us3.php.net/imageCopyMergeGray
http://us4.php.net/imageCopy()
http://us4.php.net/imageCopyMerge()
http://us4.php.net/imageCopyMergeGray
http://us3.php.net/imageCopyResized
http://us4.php.net/imageCopyResized

Copying, Resizing and Rotating functions

int imageCopyResampled (resource dst_im, resource src_im, int dstX, int dstY, int srcX, int srcY, int dstW, int dstH, int srcW, int srcH)

Copies a rectangular portion of one image to another image, smoothly interpolating pixel values so that, in particular, reducing the size of an image still retains a
great deal of clarity. dst_im is the destination image, src_im is the source image identifier. If the source and destination coordinates and width and heights differ,
appropriate stretching or shrinking of the image fragment will be performed. The coordinates refer to the upper left corner. This function can be used to copy
regions within the same image (if dst_im is the same as src_im) but if the regions overlap the results will be unpredictable.

i mgeCopyResanpl ed ([whie |[Ges |, [[white [[es], [$dx |, [sdy |, [ssx [, [ssy |, [saw |, [$dH |, [$sH |, [$sH |) ;

redraw

bool imageColorMatch (resource imagel, resource image2)
Makes the colors of the palette version of an image more closely match the true color version. imagel must be Truecolor, image2 must be Palette, and both
imagel and image2 must be the same size.

i mageCol or Mat ch (| white [[lpg |, [white [[tong D) 5

redraw

int imagePaletteCopy (resource destination, resource source)
Copies the palette from the source image to the destination image.

i magePal et t eCopy (I white ” .png I, Iwhite ” .png |) ;

redraw

resource imageRotate (resource src_im, float angle, int bgd_color)
Rotates the src_im image using a given angle in degree. bgd_color specifies the color of the uncovered zone after the rotation.

i mageRot at e ([white |[es], |$ang|e | |$b|ack |) ;

redraw

http://www.nyphp.org/content/presentations/GDintro/gd19.php[9/12/2009 6:29:55 PM]

http://us2.php.net/imageCopyResampled
http://us3.php.net/imageCopyResampled
http://us4.php.net/imageColorMatch
http://us4.php.net/imageColorMatch
http://us2.php.net/imagePaletteCopy
http://us3.php.net/imagePaletteCopy
http://us2.php.net/imageRotate
http://us3.php.net/imageRotate

Copying, Resizing and Rotating functions

Eunction Index

http://www.nyphp.org/content/presentations/GDintro/gd19.php[9/12/2009 6:29:55 PM]

http://www.nyphp.org/content/presentations/GDintro/gd1.php
http://www.nyphp.org/content/presentations/GDintro/gd0.php

Thumbnail Example

Thumbnail Example

Upload to Gallery

<?php

function makeThurmbnail ($o file, $t file, $t_ht = 100) {
$image i nfo = getlmageSi ze($o file) ;

switch ($image_info['mne']) {
case 'imge/gif':
if (imgetypes() & IMGAF) {
$0_im = i nageCreat eFronG F($o file)
} else {
$ernsg = 'GA F inmges are not supported
';
}
br eak;
case 'inmagel/jpeq’ :
if (imagetypes() & IMGJIPG {
$o0_im = i mageCr eat eFr omIPEG($0 _fil e)
} else {
$ernsg = ' JPEG i mages are not supported
';
}
br eak;
case 'inmage/ png'
if (imagetypes() & IMG PNG {
$o0_im = i nageCreat eFronPNG($o _file)
} else {
$ernsg = ' PNG i mages are not supported
';
}
br eak;
case 'imge/ wonp' :
if (imagetypes() & | MG WBW) {
$o0_im = i nageCreat eFromM\BMP($0 fil e)

http://www.nyphp.org/content/presentati ons/GDintro/gd20.php[9/12/2009 6:29:58 PM]

http://www.nyphp.org/content/presentations/GDintro/upload_originals/jeffSP.png
http://www.nyphp.org/content/presentations/GDintro/upload_originals/jeffSP.jpg

Thumbnail Example

} else {
$ermsg = ' VBVP i nages are not supported
';

}

br eak;

defaul t:
$ermsg = $image_info['mine'].' images are not supported
';
br eak;

}

if (lisset($ernsg)) {
$o_wd i mgesx($o_im ;
$o_ht i mgesy($o_im ;

$t_wd round($o_wd * $t_ht / $o_ht) ;

$t _im = i mageCreateTrueCol or ($t_wd, 100);

i mmgeCopyResanmpl ed($t_im $o_im O, O, 0, 0, $t_wd, $t_ht, $o_wd,

i mageJPEG($t_im $t_file);

i mageDestroy($o_i m);
i mageDestroy($t _i m;
}

return isset($ernmsg) ?$ernsg: NULL;

Table of Contents Function Index

http://www.nyphp.org/content/presentati ons/GDintro/gd20.php[9/12/2009 6:29:58 PM]

http://www.nyphp.org/content/presentations/GDintro/gd1.php
http://www.nyphp.org/content/presentations/GDintro/gd0.php

Alpha Channels

Alpha Channels

There are times when an all-or-nothing approach to transparency isn't
sufficient, like when you need the background to show through part or all
of your image. In the 70's at New York Tech Catmull & Smith invented an
approach to this problem called an alpha channel. Basically, a fourth
channel is added to the image containing the values for the transparency
of each pixel. Typically, this channel is of the same bit-depth as the
others, but GD's alpha channel only supports values from 0 to 127. Alpha
Channels are only supported in true color images.

int imageColorAllocateAlpha (resource image, int red, int green, int blue, int alpha)

Behaves identically to imageColorAllocatewith the addition of the transparency parameter alpha

which may have a value between 0 and 127. O indicates completely opaque while 127 indicates
completely transparent.

The color information functions have also been extended to support alpha
channels.
int imageColorClosestAlpha (resource image, int red, int green, int blue, int alpha)

Returns the index of the color in the palette of the image which is "closest” to the specified RGB
value and alpha level.

int imageColorExactAlpha (resource image, int red, int green, int blue, int alpha)
Returns the index of the specified color+alpha in the palette of the image. If the color does not
exist in the image's palette, -1 is returned.

int imageColorResolveAlpha (resource image, int red, int green, int blue, int alpha)
This function is guaranteed to return a color index for a requested color, either the exact color or
the closest possible alternative.

There are two different ways GD draws within truecolor images. In
blending mode, the alpha channel component of the color supplied to all
drawing functions determines how much of the underlying color should be
allowed to shine through. As a result, GD automatically blends the
existing color at that point with the drawing color, and stores the result in
the image. The resulting pixel is opaque. In non-blending mode, the
drawing color is copied literally with its alpha channel information,
replacing the destination pixel.

int imageAlphaBlending (resource image, bool blendmode)

Sets the blending mode for an image, allowing for two different modes of drawing on truecolor

images. If blendmode is TRUE, then blending mode is enabled, otherwise disabled. Notice that
AlphaBlending is ON by default. So, only use this function if you don't want to use AlphaBlending.

While this function is useful for manipulating layers of images within GD,

http://www.nyphp.org/content/presentations/GDintro/gd21.php[9/12/2009 6:30:00 PM]

http://us4.php.net/imageColorAllocateAlpha
http://us2.php.net/imageColorAllocate
http://us2.php.net/imageColorClosestAlpha
http://us2.php.net/imageColorExactAlpha
http://us3.php.net/imageColorResolveAlpha
http://us3.php.net/imageAlphaBlending

Alpha Channels

it is not supported within any of the output file formats except for true
color (not indexed) PNGs, and you must specify you want the PNG saved
in a manner that supports it (i.e. PNG-24 vs. the standard PNG-8). Note

also that not all browsers support PNG-24.

int imageSaveAlpha (resource image, bool saveflag)

Sets the flag to attempt to save full alpha channel information (as opposed to single-color
transparency) when saving PNG images. You have to unset alpha blending
(imageAlphaBlending($im,FALSE)), to use it.

Table of Contents Eunction Index

http://www.nyphp.org/content/presentati ons/GDintro/gd21.php[9/12/2009 6:30:00 PM]

http://us3.php.net/imageSaveAlpha
http://us2.php.net/imageAlphaBlending($im,FALSE)
http://www.nyphp.org/content/presentations/GDintro/gd1.php
http://www.nyphp.org/content/presentations/GDintro/gd0.php

Utility Functions

Utility Functions

int imagesx (resource image)
Returns the width of the image identified by image.

int imagesy (resource image)
Returns the height of the image identified by image.

bool imagelsTrueColor (resource image)
Returns TRUE if the image image is a truecolor image.

int imagelnterlace (resource image [, int interlace])

Turns the interlace bit on or off. If interlace is 1 the image will be interlaced, and if interlace is O
the interlace bit is turned off. If the image is used as a JPEG image, the image is created as a
progressive JPEG.

This function returns whether the interlace bit is set for the image.

Interlaced images have their rows stored in some order that is more or
less uniformly distributed throughout the image, rather than sequentially.
Web browsers make use of this by displaying a crude representation of
the image which gets finer over time as the image finishes loading. This is
sometimes convenient because it allows the user to see a general
impression of the whole image without having to wait for all of it to load.

bool imageAntialias (int im, bool on)
Should antialias functions be used or not. This function is currently not documented; only the

argument list is available.

This term aliasing is originally from signal
processing where it refers to an undersampled
function yielding unwanted results. In imaging
an example is a diagonal line drawn on a low-
resolution raster display, yielding an
undesirable "staircase" look. Antialiasing
smooths out this discretization of an image by
padding pixels with intermediate colors.

aliased antialiased

Table of Contents Eunction Index

http://www.nyphp.org/content/presentations/GDintro/gd22.php[9/12/2009 6:30:03 PM]

http://us2.php.net/imagesx
http://us3.php.net/imagesy
http://us3.php.net/imageIsTrueColor
http://us3.php.net/imageInterlace
http://us3.php.net/imageAntialias
http://www.nyphp.org/content/presentations/GDintro/gd1.php
http://www.nyphp.org/content/presentations/GDintro/gd0.php

Fonts: Bitmap

Fonts: Bitmap

Five bitmap fonts are provided with gd: gdFontTiny, gdFontSmall, gdFontMediumBold,
gdFontLarge, and gdFontGiant. These fonts are identified for use in the image functions, in
order, by the integers 1-5.

int imageString (resource image, int font, int x, int y, string s, int color)
Draws the string s in the image identified by image at coordinates x, y (top left is 0, 0) with the color color.

int imageStringUp (resource image, int font, int x, int y, string s, int color)
Draws the string s vertically in the image identified by image at coordinates x, y (top left is 0, 0) with the color color.

int imageChar (resource image, int font, int x, int y, string c, int color)
Draws the first character of ¢ in the image identified by id with its upper-left at x, y (top left is 0, 0) with the color color.

int imageCharUp (resource image, int font, int x, int y, string c, int color)
Draws the first character of c vertically in the image identified by image at coordinates X, y (top left is 0, 0) with the color
color.

i mgeString ($im, |ngontMediumBoIc(3) |, $X , | $y , , |$white |);

redraw

In order to calculate the position of text within an image, there are two useful functions to help
determine how much space a character will require.

int imageFontHeight (int font)
Returns the pixel height of a character in the specified font.

int imageFontwidth (int font)
Returns the pixel width of a character in the specified font.

In the i nageString() example above (simplestring.php), the default $x value is set to center
the input string by calculating half of the total of the font width multiplied by the number of
characters in the string, then subtraced from the image width:

error_reporting(E_ALL ~ E_NOTI CE);

$wd
$ht

400 ;
40 ;

http://www.nyphp.org/content/presentations/GDintro/gd23.php[9/12/2009 6:30:05 PM]

http://us2.php.net/imageString
http://us2.php.net/imageStringUp
http://us2.php.net/imageChar
http://us2.php.net/imageCharUp
http://us4.php.net/imageString
http://us4.php.net/imageFontHeight
http://us2.php.net/imageFontWidth
http://us3.php.net/imageString()

Fonts: Bitmap

$bkgCol or = hex2i nt (val i dHexCol or ($_REQUEST[' bCol or']));
$t xt Col or = hex2i nt (val i dHexCol or ($_REQUEST["'tCol or'], ' ffffff'));
if ($txtColor === $bkgCol or) $bkgCol or = hex2int (' FFFFFF')

$font = (is_numeric($_REQUEST['font'])) ? max(m n($ REQUEST['font'], 5),1):3;
$string = safeString($ _REQUEST['string'])

$x = (is_nuneric($ REQUEST['x']))
? max(mn($_REQUEST['x'],$wd - ceil (i mageFontWdth($font) * strlen($string))), 0)
ceil (($wd - (inmgeFontWdth($font) * strlen($string)))/2);

$y = (is_nuneric($_REQUEST['y']))
? max(m n($_REQUEST['y'], $ht - i nmageFont Hei ght ($font)), 0)
: ceil (($ht - imageFont Height ($font)) / 2) ;

$im = i mageCreat e($wd, $ht) ;

$bkgC
$txt C

i mgeCol or Al | ocate($i m $bkgCol or ['
i mageCol or Al l ocate($im $txtColor['

$bkgColor['g'], $bkgCol or
$txtColor['g'], $txtColor

I
== =

— =

b*]);
b]);

—_—

i mgeString($i m $f ont, $x, By, $stri ng, $t xt C)

header (' Content -type: image/ png');
i magePNG($i m) ;
i mageDestroy($im;

function hex2int ($hex) {
return array('r' => hexdec(substr($hex, 0, 2)),
'g" => hexdec(substr($hex, 2, 2)),
"b' => hexdec(substr($hex, 4, 2))

)
}
function vali dHexCol or ($i nput = ' 000000', $default = '000000"') {
return (eregi ("*[0-9a-f]{6}$, $input)) ? $input : $default
}

function safeString($input) {
return stripslashes($input)

In addition to the fonts distributed with gd, you can also use any bitmap fonts installed on the

http://www.nyphp.org/content/presentations/GDintro/gd23.php[9/12/2009 6:30:05 PM]

Fonts: Bitmap

system. The font file format is binary and architecture dependent. Since this introduction is
intended to be run on several environments, there will be no demonstration of this function.

int imageLoadFont (string file)
Loads a user-defined bitmap font and returns an identifier for the font (that is always greater than 5, so it will not conflict with
the built-in fonts).

Table of Contents Eunction Index

http://www.nyphp.org/content/presentations/GDintro/gd23.php[9/12/2009 6:30:05 PM]

http://us2.php.net/imageLoadFont
http://www.nyphp.org/content/presentations/GDintro/gd1.php
http://www.nyphp.org/content/presentations/GDintro/gd0.php

Fonts: TrueType

Fonts: TrueTlype

Unlike bitmap fonts that are basically collections of pixel-based images of
each character drawn one specific size, vector (or outline) fonts describe
each character mathematically as points and lines, and a single font file is
used to generate text at any size.

Vector fonts come in a potentially confusing array of types, but the PHP
image functions (if you have the appropriate libraries) use the two most
common: and (Typel). fonts require the

libraries, and fonts require the currently orphaned
T1Lib library. You can find an excellent guide to getting these libraries
compiled and working with PHP & GD (including the version bundled in
4.3) in a *NIX environment

In addition to the required libraries, you'll also need the actual font files.
PostScript fonts are most often require licensing, you can find some free
fonts online and included with X. There are many more free TrueType
fonts available, and while they are of generally lower quality, for most
graphic purposes are fine.

TrueType

In order to convert a string of characters using a font into a
pixelated image (a process called rendering), the gd library requires
either (or both) the or open source font rendering
libraries. uses a patented optimization algorithm that requires a
royalty fee to be paid or must be disabled (resulting in lower quality
images). The more recent doesn't suffer from this limitation.

The easiest way to tell if one or both of the libraries are installed on your
machine is to check for the freetype.h file:

locate freetype.h
/usr/include/freetypel/freetype/freetype.h
/usr/include/freetype2/freetype/freetype.h

Rendering with FreeType

array imageTTFText (resource image, int size, int angle, int x, int y, int color, string fontfile,

http://www.nyphp.org/content/presentati ons/GDintro/gd24.php[9/12/2009 6:30:08 PM]

http://www.truetype.demon.co.uk/
http://partners.adobe.com/asn/tech/type/ftypes.jsp
http://www.truetype.demon.co.uk/
http://freetype.sourceforge.net/
http://partners.adobe.com/asn/tech/type/ftypes.jsp
http://www.onlamp.com/pub/a/php/2003/03/27/php_gd.html
http://www.truetype.demon.co.uk/
http://freetype.sourceforge.net/freetype1/index.html
http://freetype.sourceforge.net/freetype1/index.html
http://freetype.sourceforge.net/freetype1/index.html
http://freetype.sourceforge.net/freetype1/index.html
http://us4.php.net/imageTTFText

Fonts: TrueType

string text)
Draws the string text in the image identified by image, starting at coordinates x, y (top left is O,
0), at an angle of angle in color color, using the TrueType font file identified by fontfile. Depending
on which version of the GD library that PHP is using, when fontfile does not begin with a leading
/', .ttf' will be appended to the filename and the library will attempt to search for that filename
along a library-defined font path.

The coordinates given by x, y will define the basepoint of the first character (roughly the lower-
left corner of the character).

angle is in degrees, with O degrees being left-to-right reading text (3 o'clock direction), and
higher values representing a counter-clockwise rotation. (i.e., a value of 90 would result in
bottom-to-top reading text).

fontfile is the path to the TrueType font you wish to use.

text is the text string which may include UTF-8 character sequences (of the form: {) to
access characters in a font beyond the first 255.

color is the color index. Using the negative of a color index has the effect of turning off
antialiasing.

Returns an array with 8 elements representing four points making the bounding box of the text.
The order of the points is lower left, lower right, upper right, upper left. The points are relative to
the text regardless of the angle, so "upper left" means in the top left-hand corner when you see
the text horizontallty.

array imageTTFBBox (int size, int angle, string fontfile, string text)
Uses a subset of the parameters for imageTTFText(), and does nothing but returns the same
bounding box array that would be returned by imageTTFText().

Rendering with FreeType 2

array imageFTText (resource image, int size, int angle, int x, int y, int col, string font_file,
string text, array extrainfo)
Write text to the image using fonts using FreeType 2.

array imageFTBBox (int size, int angle, string font_file, string text, array extrainfo)
Give the bounding box of a text using fonts via freetype2
Note: the online manual indicates that the extrainfo paramter is optional,
but this is not the case. If you don't have any extrainfo to pass to this
(as yet undocumented) function, simply use array() instead to pass a
blank parameter.

Table of Contents Eunction Index

http://www.nyphp.org/content/presentations/GDintro/gd24.php[9/12/2009 6:30:08 PM]

http://us4.php.net/imageTTFBBox
http://us3.php.net/imageTTFText()
http://us2.php.net/imageTTFText()
http://us2.php.net/imageFTText
http://us2.php.net/imageFTBBox
http://www.nyphp.org/content/presentations/GDintro/gd1.php
http://www.nyphp.org/content/presentations/GDintro/gd0.php

Fonts: PostScript

Fonts: PostScript

PostScript

The PostScript font functions made available by the T1Lib library provide a
much higher degree of control than the TrueType functions. Note the
ability to control inter-character spacing (tightness), multiple levels of
antialiasing, as well as slant (italicize) and extend (embold) fonts. Note
also that, like i mageDestroy(), you have to clean up after yourself with

i mgePSFr eeFont () .

int imagePSLoadFont (string filename)

If everything went right, a valid font index will be returned and can be used for further purposes.
Otherwise, the function returns FALSE and prints a message describing what went wrong.

array imagePSText (resource image, string text, int font, int size, int foreground, int
background, int x, int y [, int space [, int tightness [, float angle [, int antialias_steps]]]1])
foreground is the color in which the text will be painted. background is the color to which the text
will try to fade in with antialiasing. No pixels with the color background are actually painted, so the
background image does not need to be of solid color.

The coordinates given by x, y will define the origin (or reference point) of the first character
(roughly the lower-left corner of the character). This is different from the imageString(), where
X, y define the upper-right corner of the first character.

space allows you to change the default value of a space in a font. This amount is added to the
normal value and can also be negative.

tightness allows you to control the amount of white space between characters. This amount is
added to the normal character width and can also be negative.

angle is in degrees.

size is expressed in pixels.

antialias_steps allows you to control the number of colours used for antialiasing text. Allowed
values are 4 and 16. The higher value is recommended for text sizes lower than 20, where the
effect in text quality is quite visible. With bigger sizes, use 4 as it's less computationally intensive.
Parameters space and tightness are expressed in character space units, where 1 unit is 1/1000th
of an em-square.

This function returns an array containing the following elements: (0 => lower left x-coordinate, 1
== |ower left y-coordinate, 2 == upper right x-coordinate, 3 == upper right y-coordinate).

array imagePSBBox (string text, int Font, int size [, int space [, int tightness [, float angle]]])
Uses a subset of the parameters for imagePSText(), and does nothing but returns the same
bounding box array that would be returned by imagePSText().

TIP: The paramter text must be a string. In the example below, PHP will
quit with an error if $text is undefined:

<?
php i magePSText ($im $text, $font, Stextsize, $black, $white, 10, 10); ?>

http://www.nyphp.org/content/presentations/GDintro/gd25.php[9/12/2009 6:30:10 PM]

http://us3.php.net/imageDestroy()
http://us4.php.net/imagePSFreeFont()
http://us3.php.net/imagePSLoadFont
http://us3.php.net/imagePSText
http://us3.php.net/imageString()
http://us4.php.net/imagePSBBox
http://us3.php.net/imagePSText()
http://us2.php.net/imagePSText()

Fonts: PostScript

To easily avoid this situation, simply enclose the $text variable in quotes:

<?
php i magePSText ($im "$text", $font, $textsize, $black, $white, 10, 10); ?
>

void imagePSFreeFont (int fontindex)
Frees memory used by a PostScript Type 1 font.

bool imagePSExtendFont (int font_index, float extend)
Extend or condense a font (font_index), if the value of the extend parameter is less than one you
will be condensing the font.

bool imagePSSlantFont (int font_index, float slant)
Slant a font given by the font_index parameter with a slant of the value of the slant parameter.

int imagePSEncodeFont (int font_index, string encodingdfile)

Loads a character encoding vector from from a file (*.enc) and changes the fonts encoding vector
to it. As a PostScript fonts default vector lacks most of the character positions above 127, you'll
definitely want to change this if you use an other language than english.

int imagePSCopyFont (int fontindex)

Use this function if you need make further modifications to the font, for example
extending/condensing, slanting it or changing it's character encoding vector, but need to keep the
original as well. Note that the font you want to copy must be one obtained using
imagePSLoadFont(), not a font that is itself a copied one. You can make modifications to it
before copying.

If you use this function, you must free the fonts obtained this way yourself and in reverse order.
Otherwise your script will hang.

If everything went right, a valid font index will be returned and can be used for further purposes.
Otherwise the function returns FALSE and prints a message describing what went wrong.

Table of Contents Eunction Index

http://www.nyphp.org/content/presentati ons/GDintro/gd25.php[9/12/2009 6:30:10 PM]

http://us3.php.net/imagePSFreeFont
http://us2.php.net/imagePSExtendFont
http://us4.php.net/imagePSSlantFont
http://us2.php.net/imagePSEncodeFont
http://us2.php.net/imagePSCopyFont
http://us4.php.net/imagePSLoadFont()
http://www.nyphp.org/content/presentations/GDintro/gd1.php
http://www.nyphp.org/content/presentations/GDintro/gd0.php

Button Example

Button Example

[A | [000000

[Long | [000000

[Button | [000000

[Example | [000000

redraw BOC4DE

btn_shadow.png btn_body.png btn_highlight.png

<?PHP

error_reporting(E_ALL ~ E_NOTI CE);

$font_sz = 12;
$font = "luxisr.ttf’
$text top = 8 ;
$mn_cap = 32 ;

$bg = hex2i nt (val i dHexCol or ($_REQUEST['bg'], ' ffffff'));
$fg = hex2int (val i dHexCol or ($_REQUEST[' fg'], ' 000000’))
$string = safeString($_REQUEST['string'])

$of fset = ($_REQUEST['state'] === "down') ? 2 : O ;

$bt n_body = imageCreateFronPNG(' bt n_body. png');
$btn_ht = inagesy($btn_body);

$start_wd = i magesx($btn_body);

$cap_wd = $start_wd/ 2;

$col or Steps = i nageCol or sTot al ($bt n_body) - 2

$step['r'] = ($fg['r'] - $bg['r']) / $co|orStep;s;
$step['g'] = ($fg['g'] - $bg['g']) / $col orSteps ;
$step['b"'] = ($fg['b'] - $bg['b']) / $col orSteps ;

for ($n=$col or St eps; $n>=0; - - $n)
i mageCol or Set ($bt n_body, $n,

round(($n * $step['r']) + $bg['r']),
round(($n * $step['g']) + $hg['g']),
round(($n * $step['b']) + $bg['b'])

) &

http://www.nyphp.org/content/presentations/GDintro/gd26.php[9/12/2009 6:30:13 PM]

Button Example

$tbb = imageFTBBox ($font_sz, 0, $font, S$string, array());
$text _wd = $tbb[4] - $tbb[O0];

$btn_wd = $start_wd + max(0, $text_wd - $min_cap) ;
$x = (($btn_wd - $text_wd) / 2) ;
$y = $font_sz + $text_top ;

$btn_out = i nageCreat eTrueCol or ($bt n_wd, 34);

$bgCol or = i nageCol or Al | ocat e($btn_out, $bg['r'], $bg['g'], $bg['b'])
$f gCol or = i nageCol or Al | ocate($btn_out, $fg["'r'], $fg[" ' g'], $fg["'b"])
i mageFi | | ($btn_out, 0, 0, $bgCol or) ;

if ($offset == 0) {
$bt n_shadow = i nageCr eat eFr onPNG(' bt n_shadow. png"') ;

i mmgeCopyResanpl ed ($btn_out, $btn_shadow, $cap_wd, 0, $cap_wd, 0, $btn_wd-
($cap_wd*2), $btn_ht, 5, $btn_ht) ;

i mageCopy ($btn_out, $btn_shadow, 0, 0, 0, 0, $cap_wd, $btn_ht) ;
i mageCopy ($bt n_out, $btn_shadow, $btn_wd - $cap_wd, 0, $cap_wd, 0, $cap_wd, $btn_ht) ;

i mgeDest roy($bt n_shadow) ;

i mgeCopyResanpl ed ($btn_out, $btn_body, ($cap_wd + $offset), $offset, $cap_wd, 0, $btn_wd-
($cap_wd*2), $btn_ht, 5, $btn_ht) ;

i mgeCopy ($bt n_out, $btn_body, $offset, $offset, 0, 0, $cap_wd, $btn_ht) ;
i mgeCopy ($bt n_out , $btn_body, ($btn_wd - $cap_wd + $offset), $offset, $cap_wd, 0, $cap_wd, $btn_ht) ;

i mageDest r oy ($bt n_body) ;
$tbb = imageFTText ($btn_out, $font_sz, 0, ($x+$offset-1), (Py+$offset+1), $fgColor, $font, "$string", array());

$bt n_hi ghl i ght = i mageCreat eFr onPNG(' bt n_hi ghl i ght. png');

i mgeCopyResanpl ed ($btn_out, $btn_highlight, ($cap_wd + $offset), $offset, $cap_wd, 0, $btn_wd-
($cap_wd*2), $btn_ht, 5, $btn_ht) ;

i mgeCopy ($bt n_out, $btn_hi ghlight, $offset, $offset, 0, 0, $cap_wd, $btn_ht) ;
i mgeCopy ($bt n_out, $btn_highlight, ($btn_wd - $cap_wd + $offset), $offset, $cap_wd, 0, $cap_wd, $btn_ht) ;

i mageDest r oy ($bt n_hi ghl i ght);
$tbb = imageFTText ($btn_out, $font_sz, 0, ($x+$offset), ($y+$offset), $bgColor, $font, "$string", array());

header (" Content -type: inmage/ png");
i mgePNG($bt n_out) ;
i mageDest r oy ($btn_out) ;

functi on hex2int ($hex) {
return array(
"r' => hexdec(substr($hex, 0, 2))
'g'" => hexdec(substr($hex, 2, 2)),
'b' => hexdec(substr($hex, 4, 2))

http://www.nyphp.org/content/presentations/GDintro/gd26.php[9/12/2009 6:30:13 PM]

Button Example

DE
}
function validHexCol or ($i nput = ' 000000', $default = '000000') {
return (eregi ("~[0-9a-f]{6}$', $input)) ? $input : S$default
}

function safeString($input) {
return (isset($input))?stripslashes($input):'Button';

}

?>

Table of Contents

http://www.nyphp.org/content/presentations/GDintro/gd26.php[9/12/2009 6:30:13 PM]

Eunction Index

http://www.nyphp.org/content/presentations/GDintro/gd1.php
http://www.nyphp.org/content/presentations/GDintro/gd0.php

EXIF

Many image formats, especially JPEG, provide the ability to store textual
(& binary thumbnail) metadata within the file itself. Digital cameras,
scanners and other imaging equipment will often generate technical data
and store it in a image more or less standard format know as the
Exchangeable Image File Format or EXIF. Details can be found at

if PHP has been compiled with --enabl e- exi f, several functions become
available to read EXIF data. Since EXIF data is related to the generation
of image (see the example below), there is no need to write EXIF data,
and none are provided.

int exif_imageType (string filename)

Reads the first bytes of an image and checks its signature. When a correct signature is found a

constant will be returned otherwise the return value is FALSE. The return value is the same value
that getlmageSize() returns in index 2 but this function is much faster.

int exif_read_data (string filename [, string sections [, bool arrays [, bool thumbnail]]]

Reads the EXIF headers from a JPEG or TIFF image file. It returns an associative array where the
indexes are the header names and the values are the values associated with those headers. If no
data can be returned the result is FALSE.

filename is the name of the file to read. This cannot be an url.

sections is a comma separated list of sections that need to be present in file to produce a result
array

FILE FileName, FileSize, FileDateTime, SectionsFound

COMPUTED html, Width, Height, IsColor and some more if available.

ANY_TAG Any information that has a Tag e.g. IFDO, EXIF, ...

All tagged data of IFDO. In normal image files this contains image size and so
forth.

IFDO

A file is supposed to contain a thumbnail if it has a second IFD. All tagged

THUMBNAIIL |
information about the embedded thumbnail is stored in this section.

COMMENT Comment headers of JPEG images.

The EXIF section is a sub section of IFDO. It contains more detailed information

EXIF
about an image. Most of these entries are digital camera related.

arrays specifies whether or not each section becomes an array. The sections FILE, COMPUTED and
THUMBNAIL allways become arrays as they may contain values whose names are conflict with
other sections.

thumbnail whether or not to read the thumbnail itself and not only its tagged data.

int read_exif_data -- Alias of exif_read_data()

http://www.nyphp.org/content/presentations/GDintro/gd27.php[9/12/2009 6:30:15 PM]

http://www.exif.org/
http://us3.php.net/exif_imageType
http://us3.php.net/getImageSize()
http://us4.php.net/exif_read_data
http://us3.php.net/read_exif_data
http://us2.php.net/exif_read_data()

EXIF

Description

<?PHP

print_r(exif_read_data(' At TheLodge.|pg', ANY_TAG))
?>

Array
(
[Fil eName] => At ThelLodge. | pg
[Fil eDateTi ne] => 1227223275
[FileSize] => 69909
[FileType] => 2
[M meType] => inage/jpeg
[Secti onsFound] => ANY_TAG | FDO, THUMBNAI L,
[COWUTED] => Array

(
[htm] => width="480" hei ght="360"
[Hei ght] => 360
[Wdth] => 480
[I'sColor] == 1
[ByteOrderMotorola] => 1
[ApertureFNurber] => /2.6
[Copyright] => (Copyright Notice)
[Thunbnail . Fil eType] => 2
[Thunbnai | . M neType] => i mage/|j peg
)

[1 mageDescription] => Only one beer? (Capation)

[Make] => PENTAX Cor poration
[Model] => PENTAX Optio S
[Oientation] => 1
[XResol ution] => 72/1
[YResolution] => 72/1
[Resol utionUnit] => 2
[Sof tware] => Adobe Photoshop 7.0
[Dat eTi me] => 2003:10:29 17:16: 34
[Artist] => Jeff Knight (Author)
[YCbCrPositioning] => 1
[Copyright] => (Copyright Notice)
[Undef i nedTag: OxC4A5] => Printl| M)250
[Exif_I FD Pointer] => 380
[THUMBNAI L] => Array
(
[Conpression] => 6
[XResol ution] => 72/1
[YResolution] => 72/1
[Resol utionUnit] => 2
[JPEG nt er changeFor mat] => 938
[JPEG nt er changeFor mat Lengt h] => 5368

http://www.nyphp.org/content/presentations/GDintro/gd27.php[9/12/2009 6:30:15 PM]

EXI F

EXIF

[ExposureTine] => 1/40

[FNunber] => 26/ 10

[Exposur ePrograni => 2

[Exi f Version] => 0220

[Dat eTi merigi nal] => 2003: 08: 22 22:21: 05

[Dat eTi mreDi gi ti zed] => 2003:08: 22 22:21:05
[Conponent sConfi guration] =>

[ConpressedBi t sPer Pi xel] => 2048000/ 3145728
[Exposur eBi asVal ue] => 0/ 3

[MaxApertureVal ue] => 28/10

[Met eri ngMode] => 5

[Light Source] => 0

[Flash] => 73

[Focal Lengt h] => 580/ 100

[Fl ashPi xVersi on] => 0100

[Col or Space] => 65535

[Exi fl mageW dt h] => 480

[Exi f 1 mageLengt h] => 360
[Fil eSource] =>

[Cust onRendered] => 0

[Exposur eMbde] => O

[Whit eBal ance] => O

[Di gi tal ZoonRatio] => 0/0
[Focal Lengt hl n35mFi I m{ => 35
[SceneCapt ureType] => 0
[GinControl] => 0

[Contrast] => 0

[Saturation] => 0

[Shar pness] => 0

[Subj ect Di st anceRange] => 0

int exif_thumbnail (string filename [, int &width [, int &height [, int &imagetype]]])

Reads the embedded thumbnail of a TIFF or JPEG image. If the image contains no thumbnail
FALSE will be returned.

The parameters width, height and imagetype are available since PHP 4.3.0 and return the size of
the thumbnail as well as its type. It is possible that exif _thumbnail() cannot create an image
but can determine its size. In this case, the return value is FALSE but width and height are set.
If you want to deliver thumbnails through this function, you should send the mimetype
information using the header() function.

Starting from version PHP 4.3.0, the function exif_thumbnail() can return thumbnails in TIFF
format.

Table of Contents Eunction Index

http://www.nyphp.org/content/presentations/GDintro/gd27.php[9/12/2009 6:30:15 PM]

http://us2.php.net/exif_thumbnail
http://us3.php.net/exif_thumbnail()
http://us2.php.net/header()
http://www.nyphp.org/content/presentations/GDintro/gd1.php
http://www.nyphp.org/content/presentations/GDintro/gd0.php

IPTC

Non-technical information such as Author and Keywords can also be
attached to image headers. The

has published as standard in widespread use referred to as IPTC.
array iptcParse (string iptcblock)
his function parses a binary IPTC block into its single tags. It returns an array using the

tagmarker as an index and the value as the value. It returns FALSE on error or if no IPTC data
was found. See getimagesize() for a sample.

<?PHP
$size = getlnmageSi ze (' At TheLodge. j pg', &$i nfo);

$iptc = iptcParse(S$info[' APP13']);
print_r();
7>

Array

(
[2#000] => Array
(

)

[2#120] => Array
(

)

[2#122] => Array
(

)

[2#105] => Array
(

)

[2#040] => Array
(

)

[2#080] => Array

[0] =>

[0] => Only one beer? (Capation)

[0] => PUTAMARE (Caption Witer)

[0] => At The Lodge (Headline)

[0] => Not to be taken seriously (Instructions)

http://www.nyphp.org/content/presentati ons/GDintro/gd28.php[9/12/2009 6:30:17 PM]

http://www.iptc.org/
http://www.iptc.org/
http://us3.php.net/iptcParse

(
)

[2#085] => Array
(

)

[2#110] => Array
(

)

[2#115] => Array
(

)

[2#005] => Array
(

)

[2#055] => Array
(

)

[2#090] => Array
(

)

[2#095] => Array
(

)

[2#101] => Array
(

)

[2#103] => Array
(

)

[2#015] => Array
(

)

[2#020] => Array
(

[0] => Jeff Knight (Author)

[0] => At the End of the Table (Author'

[0] => Jeff Knight (Credit)

[0] => Beer (Source)

[0] => At The Lodge (Title)

[0] => 20030822

[0] => New York (City)

[0] => NY (State/Province)

[0] => USA (USA)

[0] => (Transni ssion Reference)

[0] =>2

[0] => Category 1 (Supplemental Categor
[1] => Category 2 (Supplemental Categor
[2] => Category 3 (Supplemental Categor

http://www.nyphp.org/content/presentati ons/GDintro/gd28.php[9/12/2009 6:30:17 PM]

[2#010] => Array
(

)

[2#025] => Array
(

[0] =>1

[0] El k (Keyword)
[1] Head (Keyword)
[2] Lodge (Keyword)
[3] Andr ew (Keywor d)
[4] Kr ook (Keyword)
[5] Dan (Keywor d)

)

[2#116] => Array
(

)

[0] => (Copyright Notice)

array iptcEmbed (string iptcdata, string jpeg_file_name [, int spool])
Embeds binary IPTC data into a JPEG image

Table of Contents Function Index

http://www.nyphp.org/content/presentati ons/GDintro/gd28.php[9/12/2009 6:30:17 PM]

http://us3.php.net/iptcEmbed
http://www.nyphp.org/content/presentations/GDintro/gd1.php
http://www.nyphp.org/content/presentations/GDintro/gd0.php

Bibliography/Reference

Bibliography/Reference

Table of Contents EFunction Index

http://www.nyphp.org/content/presentations/GDintro/gd29.php[9/12/2009 6:30:19 PM]

http://www.php.net/manual/en/ref.image.php
http://www.boutell.com/gd/
http://www.onlamp.com/pub/a/php/2003/03/27/php_gd.html
http://codewalkers.com/tutorials.php?show=3
http://netghost.narod.ru/gff/graphics/main.htm
http://www.libpng.org/pub/png/
http://cloanto.com/users/mcb/19950127giflzw.html
http://www.htmlhelp.com/design/imageuse.htm
http://www.rgbworld.com/color.html
http://www.cs.princeton.edu/courses/archive/fall00/cs426/papers/smith95c.pdf
http://partners.adobe.com/asn/tech/type/ftypes.jsp
http://www.nyphp.org/content/presentations/GDintro/gd1.php
http://www.nyphp.org/content/presentations/GDintro/gd0.php

	nyphp.org
	http://www.nyphp.org/content/presentations/GDintro/
	RTFM & YMMV
	Without GD
	What About GIF?
	Color Theory
	An Interactive Example
	True Color Vs. Indexed Color
	The Basics
	A Simple Example
	The Draw Functions
	Clock Example
	Simple Transparency
	Using Existing Images
	Styles, Tiles & Brushes
	The Color Functions
	The Interactive Example Source
	Map Example
	Drop Shadow Example
	Copying, Resizing and Rotating functions
	Thumbnail Example
	Alpha Channels
	Utility Functions
	Fonts: Bitmap
	Fonts: TrueType
	Fonts: PostScript
	Button Example
	EXIF
	IPTC
	Bibliography/Reference

	Rpb25zL0dEaW50cm8vZ2Q2LnBocAA=:
	rgber:
	red: 0
	green: 0
	blue: 0
	hex:
	udrgb:

	Rpb25zL0dEaW50cm8vZ2QxMC5waHAA:
	setpixel:
	imageSetPixel: [1]
	x: $x
	y: $y
	c: [000000]
	isprd:

	Rpb25zL0dEaW50cm8vZ2QxMC5waHAA:
	line:
	imageLine: [1]
	x1: $x1
	y1: $y1
	x2: $x2
	y2: $y2
	c: [000000]
	ilrd:

	Rpb25zL0dEaW50cm8vZ2QxMC5waHAA:
	rectangle:
	filled: [0]
	x1: $x1
	y1: $y1
	x2: $x2
	y2: $y2
	c: [000000]
	irrd:

	Rpb25zL0dEaW50cm8vZ2QxMC5waHAA:
	pollygonform:
	points: 13, 61, 60, 61, 75, 16, 90, 61, 137, 61, 99, 89, 113, 134, 75, 106, 37, 134, 51, 89
	filled: [0]
	c: [000000]
	isprd:

	Rpb25zL0dEaW50cm8vZ2QxMC5waHAA:
	ellipse:
	filled: [0]
	x: cx
	y: cy
	w: w
	h: h
	c: [000000]
	ierd:

	Rpb25zL0dEaW50cm8vZ2QxMC5waHAA:
	arcform:
	filled: [0]
	x: $cx
	y: $cy
	w: $w
	h: $h
	s: $s
	e: $e
	c: [000000]
	arcstyle: [0]
	iard:

	Rpb25zL0dEaW50cm8vZ2QxMC5waHAA:
	imfillForm:
	imageFill: [imageFill]
	x: $x
	y: $y
	c: [000000]
	ifrd:

	Rpb25zL0dEaW50cm8vZ2QxMC5waHAA:
	fill2bForm:
	imageFillToBorder: [1]
	x: $x
	y: $y
	border: [orange]
	c: [000000]
	if2brd:

	Rpb25zL0dEaW50cm8vZ2QxNC5waHAA:
	setThicknessForm:
	imageThickness: [imageFill]
	t: $t
	istrd:

	Rpb25zL0dEaW50cm8vZ2QxNC5waHAA:
	setStyleForm:
	style[0]: [w]
	style[1]: [w]
	style[2]: [w]
	style[3]: [w]
	style[4]: [w]
	style[5]: [w]
	style[6]: [w]
	style[7]: [w]
	style[8]: [w]
	style[9]: [w]
	iFun: [imageLine]
	issrd:

	Rpb25zL0dEaW50cm8vZ2QxNC5waHAA:
	setTileForm:
	tile: [cbrd]
	iFun: [imageLine]
	iSTrd:

	Rpb25zL0dEaW50cm8vZ2QxNC5waHAA:
	setBrushForm:
	brush: [cbrd]
	iFun: [imageLine]
	iSBrd:

	Rpb25zL0dEaW50cm8vZ2QxNS5waHAA:
	form1:
	color:
	doit:

	Rpb25zL0dEaW50cm8vZ2QxNi5waHAA:
	rgber:
	red: 0
	green: 0
	blue: 0
	hex:
	udrgb:

	Rpb25zL0dEaW50cm8vZ2QxOC5waHAA:
	gradientForm:
	f: 000000
	b: FFFFFF
	s:
	udrgb:

	Rpb25zL0dEaW50cm8vZ2QxOS5waHAA:
	copyForm:
	dst_im: [white]
	dst_fmt: [.jpg]
	src_im: [white]
	src_fmt: [.jpg]
	dst_x: $dx
	dst_y: $dy
	src_x: $sx
	src_y: $sy
	src_w: $sw
	src_h: $sh
	iCrd:

	Rpb25zL0dEaW50cm8vZ2QxOS5waHAA:
	copyMergeForm:
	dst_im: [white]
	dst_fmt: [.jpg]
	src_im: [white]
	src_fmt: [.jpg]
	dst_x: $dx
	dst_y: $dy
	src_x: $sx
	src_y: $sy
	src_w: $sw
	src_h: $sh
	pct: $pct
	iCMrd:

	Rpb25zL0dEaW50cm8vZ2QxOS5waHAA:
	copyMergeGreyForm:
	dst_im: [white]
	dst_fmt: [.jpg]
	src_im: [white]
	src_fmt: [.jpg]
	dst_x: $dx
	dst_y: $dy
	src_x: $sx
	src_y: $sy
	src_w: $sw
	src_h: $sh
	pct: $pct
	iCMGrd:

	Rpb25zL0dEaW50cm8vZ2QxOS5waHAA:
	copyResizedForm:
	dst_im: [white]
	dst_fmt: [.jpg]
	src_im: [white]
	src_fmt: [.jpg]
	dst_x: $dx
	dst_y: $dy
	src_x: $sx
	src_y: $sy
	dst_w: $dw
	dst_h: $dh
	src_w: $sw
	src_h: $sh
	iCRSZrd:

	Rpb25zL0dEaW50cm8vZ2QxOS5waHAA:
	copyResampledForm:
	dst_im: [white]
	dst_fmt: [.jpg]
	src_im: [white]
	src_fmt: [.jpg]
	dst_x: $dx
	dst_y: $dy
	src_x: $sx
	src_y: $sy
	dst_w: $dW
	dst_h: $dH
	src_w: $sH
	src_h: $sH
	iCRSPrd:

	Rpb25zL0dEaW50cm8vZ2QxOS5waHAA:
	colorMatchForm:
	dst_im: [white]
	dst_fmt: [.jpg]
	src_im: [white]
	src_fmt: [.png]
	iCMrd:

	Rpb25zL0dEaW50cm8vZ2QxOS5waHAA:
	imagePaletteCopyForm:
	dst_im: [white]
	dst_fmt: [.png]
	src_im: [white]
	src_fmt: [.png]
	iPCrd:
	src_im_(1): [white]
	src_fmt_(1): [.jpg]
	a: $angle
	c: [000000]
	iROTrd:

	Rpb25zL0dEaW50cm8vZ2QyMC5waHAA:
	FormName:
	image:
	upload:

	Rpb25zL0dEaW50cm8vZ2QyMy5waHAA:
	simpleStringForm:
	font: [3]
	x: $x
	y: $y
	string:
	tColor: [FFFFFF]
	ilrd:

	Rpb25zL0dEaW50cm8vZ2QyNi5waHAA:
	buttonForm:
	s1: A
	c1: 000000
	s2: Long
	c2: 000000
	s3: Button
	c3: 000000
	s4: Example
	c4: 000000
	rd:
	bg: B0C4DE

